Log in

Identification of poly-reactive natural IgM antibody that recognizes late apoptotic cells and promotes phagocytosis of the cells

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Natural IgM can recognize apoptotic cells, but the molecular structure and the role in macrophage phagocytosis of apoptotic cells remain unclear.

Objectives(1) To examine the binding of previously isolated natural IgM (3B4) to apoptotic cells and its effects on phagocytosis of apoptotic cells. (2) To characterize the molecular structure of 3B4.

Methods:3B4 binding to apoptotic thymocytes was examined by flow cytometry. Polyreactivity of 3B4 was assayed by ELISA. PKH26-labeled Macrophages were incubated with PKH67-stained apoptotic cells in the presence of 3B4. Macrophages phagocytosis of apoptotic cell was evaluated by flow cytometry. The DNA segments of 3B VH and VK were sequenced and analyzed.

Results:3B4 IgM recognized late apoptotic cells. Polyreactive-recognitions of lysophosphatidylcholine (LPC) as well as some autoantigens were observed in 3B4. Phagocytosis of late apoptotic cells was increased in the presence of 3B4. The VH and VK genes of 3B4 showed a germline gene context, while N-sequences and nucleotide loss were observed in CDR3. Conclusion: 3B4 promotes macrophage phagocytosis of late apoptotic cells in a complement-independent process. 3B4 has a germline configuration and is possibly ligand-selected. Out experiments suggest an independent role of natural IgM as opsonin in clearance of late apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PS:

phosphatidylserine

MFG-E8:

milk fat globule EGF-factor 8

CRP:

C-reactive protein

SPF:

specific pathogen-free

FITC:

fluorescein isothiocyanate

PI:

propidium iodide

BM:

bone marrow

FR:

frame region

CDR:

complementary determining region

H:

heavy

L:

light

Ab:

antibody

References

  1. Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  2. Fadok VA, Bratton DL, Rose DM et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  3. Hanayama R, Tanaka M, Miwa K et al (2002). Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187

    Article  PubMed  CAS  Google Scholar 

  4. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313–2320

    Article  PubMed  CAS  Google Scholar 

  5. Gershov D, Kim S, Brot N, Elkon KB (2000) C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an anti-inflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 192:1353–1364

    Article  PubMed  CAS  Google Scholar 

  6. Hanayama R, Tanaka M, Miyasaka K et al (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150

    Article  PubMed  CAS  Google Scholar 

  7. Botto M, Dell’Agnola C, Bygrave AE et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    Article  PubMed  CAS  Google Scholar 

  8. Boyden SV (1966) Natural antibodies and the immune response. Adv Immunol 5:1–28

    PubMed  CAS  Google Scholar 

  9. Hamilton AM, Lehuen A, Kearney JF (1994) Immunofluorescence analysis of B-1 cell ontogeny in the mouse. Int Immunol 6:355–361

    Article  PubMed  CAS  Google Scholar 

  10. Avrameas S (1991) Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today 12:154–159

    PubMed  CAS  Google Scholar 

  11. Tomer Y, Shoenfeld Y (1988) The significance of natural autoantibodies. Immunol Invest 17:389–424

    PubMed  CAS  Google Scholar 

  12. Lutz HU, Gianora O, Nater M, Schweizer E, Stammler P (1993) Naturally occurring anti-band 3 antibodies bind to protein rather than to carbohydrate on band 3. J Biol Chem 268:23562–23566

    PubMed  CAS  Google Scholar 

  13. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192:271–280

    Article  PubMed  CAS  Google Scholar 

  14. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21:624–630

    Article  PubMed  CAS  Google Scholar 

  15. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J (2000) Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA 97:1184–1189

    Article  PubMed  CAS  Google Scholar 

  16. Ehrenstein MR, Cook HT, Neuberger MS (2000) Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp Med 191:1253–1258

    Article  PubMed  CAS  Google Scholar 

  17. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2002) I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196:655–665

    Article  PubMed  CAS  Google Scholar 

  18. Shibuya A, Sakamoto N, Shimizu Y et al (2000) Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol 1:441–446

    Article  CAS  Google Scholar 

  19. Williams JP, Pechet TT, Weiser MR et al (1999) Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol 86:938–942

    PubMed  CAS  Google Scholar 

  20. Vollmar AM, Schutz R (1994) Gene expression and secretion of atrial natriuretic peptide by macrophages. J Clin Invest 94:539–545

    Article  PubMed  CAS  Google Scholar 

  21. Orlandi R, Gussow DH, Jones PT, Winter G (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci USA 86:3833–3837

    Article  PubMed  CAS  Google Scholar 

  22. Kabat E, Wu TT, Reid-Miller M et al (1991) Sequences of Proteins of Immunological Interest Fifth Edition. US Government Printing Office, Washington, DC

    Google Scholar 

  23. Alt FW, Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-JH fusions. Proc Nat Acad Sci USA 79:4118–4122

    Article  PubMed  CAS  Google Scholar 

  24. Gauss GH, Lieber MR (1996) Mechanistic constraints on diversity in human V(D)J recombination. Mol Cell Biol 16:258–269

    PubMed  CAS  Google Scholar 

  25. Notkins AL (2004) Polyreactivity of antibody molecules. TRENDS in Immunol 25:174–179

    Article  CAS  Google Scholar 

  26. Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rew Immunol 1:177–186

    Article  CAS  Google Scholar 

  27. Casali P, Notkins AL (1989) CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 10:364–368

    Article  PubMed  CAS  Google Scholar 

  28. Ochsenbein AF, Fehr T, Lutz C, Suter M et al (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159

    Article  PubMed  CAS  Google Scholar 

  29. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192:271–280

    Article  PubMed  CAS  Google Scholar 

  30. Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis: The role of the cytoplasm in the execution phase. J Cell Biol 146:703–707

    Article  PubMed  CAS  Google Scholar 

  31. Quartier P, Potter PK, Ehrenstein MR et al (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35:252–260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-feng Liu.

Additional information

M. Fu, P.-s.Fan and W. Li contributed equally to this work.

This work was supported by grant from the National Science Foundation of China (30330510).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, M., Fan, Ps., Li, W. et al. Identification of poly-reactive natural IgM antibody that recognizes late apoptotic cells and promotes phagocytosis of the cells. Apoptosis 12, 355–362 (2007). https://doi.org/10.1007/s10495-006-0581-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0581-z

Keywords

Navigation