Log in

Numerical Investigation of Jet-Wake Interaction for a Dual-Bell Nozzle

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The turbulent wake of a planar generic space launcher equipped with a dual-bell nozzle is numerically investigated to examine the interaction of the dual-bell nozzle jet and the wake flow. The simulation is performed at transonic freestream condition, i.e., freestream Mach number \(Ma_{\infty }= 0.8\) and freestream Reynolds number based on the launcher thickness ReD = 4.3 ⋅ 105, with the dual-bell nozzle operating at sea-level mode. A zonal RANS/LES approach is used and the time-resolved flow field data is analyzed by classical spectral analysis and modal decomposition techniques, i.e., proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The overall flow topology of the recirculation region downstream of the base and the pressure loads on the outer nozzle fairing are only slightly affected by the modified nozzle shape. However, the changed nozzle flow topology characterized by the flow separation at the nozzle contour inflection leads to a backflow region and an entrainment of the outer flow into the nozzle extension which results in increased pressure loads on the inner nozzle wall. Using spectral, POD, and DMD analyses, the outer wake flow is investigated, revealing a growing and contracting of the separation bubble and an undulating motion of the shear layer similar to the “cross-pum**” and “cross-flap**” motion detected in previous investigations of a configuration with a classical nozzle and a jetless backward facing step setup. The spectral and modal analysis of the nozzle flow shows that the increased pressure loads detected at the inner wall of the nozzle extension are caused by an interaction of the separated shear layer inside the nozzle extension with the shock pattern that leads to a streamwise oscillation of the shock and a pum** or wave-like motion of the shear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Stark, R., Génin, C.: Sea-level transitioning dual bell nozzles. CEAS Space J. 9, 279–287 (2017)

    Article  Google Scholar 

  2. Proshchanka, D., Koichi, Y., Tsukuda, H., Araki, K., Tsujimoto, Y., Kimura, T., Yokota, K.: Jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle. J. Propuls. Power 28(5), 1071–1080 (2012)

    Article  Google Scholar 

  3. Martelli, E., Nasuti, F., Onofri, M.: Numerical parametric analysis of dual-bell nozzle flows. AIAA J., 45(3) (2007)

    Article  Google Scholar 

  4. Schneider, D., Génin, C.: Numerical investigation of flow transition behavior in cold flow dual-bell rocket nozzles. J. Propuls. Power 32(5), 1212–1219 (2016)

    Article  Google Scholar 

  5. Bradshaw, P., Wong, F.: The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52(1), 113–135 (1972)

    Article  Google Scholar 

  6. Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent flow reattachment. AIAA J. 19(9), 1093–1100 (1981)

    Article  Google Scholar 

  7. Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)

    Article  Google Scholar 

  8. Friedrich, R., Arnal, M.: Analysing turbulent backward-facing step flow with the low-pass-filtered Navier-Stokes equations. J. Wind Eng. Ind. Aerodyn. 35, 101–128 (1990)

    Article  Google Scholar 

  9. Silveria Neto, A., Grand, D., Metais, O., Lesieur, M.: A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 1–25 (1993)

    Article  Google Scholar 

  10. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)

    Article  Google Scholar 

  11. Lee, I., Sung, H.J.: Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses. Exp. Fluids 30, 262–272 (2001)

    Article  Google Scholar 

  12. Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Europ. J. Mech. B/Fluids 59, 124–134 (2016)

    Article  MathSciNet  Google Scholar 

  13. Scharnowski, S., Bolgar, I., Kähler, C.J.: Characterization of turbulent structures in a transonic backward-facing step flow. Flow, Turbul. Combust., 1–21 (2016)

  14. Bolgar, I., Scharnowski, S., Kähler, C.J.: The effect of the mach number on a turbulent backward-facing step flow. Flow Turbul. Combust. 101(3), 653–680 (2018)

    Article  Google Scholar 

  15. Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)

    Article  Google Scholar 

  16. Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: Numerical investigation. Phys. Fluids, 19(065103) (2007)

    Article  Google Scholar 

  17. Schrijer, F., Sciacchitano, A., Scarano, F.: Spatio-temporal and modal analysis of unsteady fluctuations in a high-subsonic base flow. Phys. Fluids, 26(086101) (2014)

    Article  Google Scholar 

  18. Statnikov, V., Meinke, M., Schröder, W.: Analysis of spatio-temporal wake modes of space launchers at transonic flow. AIAA Paper, 2016–1116 (2016)

  19. Statnikov, V., Meinke, M., Schröder, W.: Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  20. Bolgar, I., Scharnowski, S., Kähler, C.J.: Experimental analysis of the interaction between a dual-bell nozzle with an external flow field aft of a backward-facing step. 21 DGLR-Fach-Symposium der STAB (2018)

  21. Loosen, S., Statnikov, V., Meinke, M., Schröder, W.: Numerical investigation of the turbulent wake of a generic space launcher at transonic speed. In: 7th European Conference for Aeronautics and Aerospace Sciences, https://doi.org/10.13009/EUCASS2017-561 (2017)

  22. David, S., Radulovic, S.: Prediction of buffet loads on the Ariane 5 afterbody. In: 6th International Symposium on Launcher Technologies. Munich, Germany 8-11 November (2005)

  23. Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbul. Combust. 73, 187–215 (2004)

    Article  Google Scholar 

  24. Statnikov, V., Sayadi, T., Meinke, M., Schmid, P., Schröder, W.: Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition. Phys. Fluids, 27(016103) (2015)

    Article  Google Scholar 

  25. Roidl, B., Meinke, M., Schröder, W.: A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 44, 28–40 (2013)

    Article  Google Scholar 

  26. Roidl, B., Meinke, M., Schröder, W.: Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method. Int. J. Heat Fluid Flow 45, 1–13 (2014)

    Article  Google Scholar 

  27. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)

    Article  Google Scholar 

  28. Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Champan’s estimates revisited. Phys. Fluids, 24(011702) (2012)

    Article  Google Scholar 

  29. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  30. Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: An overview. AIAA J (2017)

  31. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  32. Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids, 26(024103) (2014)

    Article  Google Scholar 

  33. Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63(2), 237–255 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support has been provided by the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) in the framework of the Sonderforschungsbereich Transregio 40. The authors are grateful for the computing resources provided by the High Performance Computing Center Stuttgart (HLRS) and the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS)

Funding

This study was funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Loosen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loosen, S., Meinke, M. & Schröder, W. Numerical Investigation of Jet-Wake Interaction for a Dual-Bell Nozzle. Flow Turbulence Combust 104, 553–578 (2020). https://doi.org/10.1007/s10494-019-00056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00056-6

Keywords

Navigation