Log in

Granular computing based segmentation and textural analysis (GrCSTA) framework for object-based LULC classification of fused remote sensing images

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Machine learning(ML) based techniques for Land Use Land Cover(LULC) classification is crucial for extracting valuable insights from satellite imagery. The impact of severe class imbalance problems on LULC datasets, added to the limited temporal coverage, incomplete spectral information, spatial resolution constraints, and limitations due to sensor characteristics of a single satellite, hinder the efficient capturing of complex image features. The object-based classification using Gray-level co-occurrence matrix(GLCM) and Simple Non-Iterative Clustering(SNIC) captures the textural and spectral information, respectively, to enhance the accuracy in heterogeneous landscapes and overcome the limitations of pixel-based classification, such as the sensitivity towards noise and spectral confusion in mixed pixels at the cost of increased additional computational steps. In this context, the proposed study leverages high-quality fused images with diverse temporal, spectral, and spatial information obtained by fusing Landsat-8 and Sentinel-2 satellite imageries using Spatial-and-Temporal-Adaptive-Reflectance-Fusion-Model(STARFM). Further, to solve the class imbalance problem, a Granular Computing(GrC) based Segmentation and Textural Analysis(GrCSTA) framework is proposed for reducing the number of image primitives and computations required for subsequent image analysis processes in the object-based classification. The GrCSTA framework focuses on extracting the Spatial Granules(Gs) from the fused imagery using Spatial neighborhood Granulation(SNGr), textural indices of the Gs using GLCM, and reduced textural indices using Principal Component Analysis(PCA). Gs and its reduced textural indices are input features to train the Random Forest(RF) classifier. Experimental results demonstrate that the proposed GrCSTA framework achieves comparably higher accuracy than the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data used in this study are available in Google Earth engine data catalog.

References

  1. Ghamisi P, Yokoya N, Li J, Liao W, Liu S, Plaza A, Rasti B, Plaza J (2017) Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci Remote Sens Mag 5(4):37–78. https://doi.org/10.1109/MGRS.2017.2762087

    Article  Google Scholar 

  2. Ghimire B, Rogan J, Galiano VR, Panday P, Neeti N (2013) An evaluation of bagging, boosting, and random forests for land-cover classification in cape cod, massachusetts, usa. Remote Sens Lett 4(5):423–431. https://doi.org/10.1080/01431161.2013.775664

    Article  Google Scholar 

  3. Pinheiro G, Raj A, Minz S, Choudhury T, Um J-S (2023) Inundation extend map** for multi-temporal sar using automatic thresholding and change detection: A case study on kosi river of india. Spatial Inf Res 1–15. https://doi.org/10.1007/s41324-023-00555-9

  4. Chen B, Huang B, Xu B (2015) Comparison of spatiotemporal fusion models: A review. Remote Sens 7(2):1798–1835. https://doi.org/10.3390/rs70201798

    Article  Google Scholar 

  5. Ghassemian H (2016) A review of remote sensing image fusion methods. Inf Fusion 32:75–89. https://doi.org/10.1016/j.inffus.2016.03.003

    Article  Google Scholar 

  6. Masood S, Sharif M, Yasmin M, Shahid MA, Rehman A (2017) Image fusion methods: A survey. J Eng Sci Technol Rev 10(6):186–194. https://doi.org/10.25103/jestr.106.24

  7. Tripathi A, Kumar S, Maithani S (2023) Improved Data Fusion-Based Land Use/Land Cover Classification Using PolSAR and Optical Remotely Sensed Satellite Data: A Machine Learning Approach. CRC Press, Boca Raton, pp 123–145

    Google Scholar 

  8. Camargo FF, Sano EE, Almeida CM, Mura JC, Almeida T (2019) A comparative assessment of machine-learning techniques for land use and land cover classification of the brazilian tropical savanna using alos-2/palsar-2 polarimetric images. Remote Sens 11(13):1600. https://doi.org/10.3390/rs11131600

    Article  Google Scholar 

  9. Aliyu AO, Akomolafe EA, Adamu B, Youngu T, Hassan M, Swafiyudeen B (2023) Integrated method for classifying medium resolution satellite remotely sensed imagery into land use map. Int J Environ Geoinf 10(2):135–144. https://doi.org/10.30897/ijegeo.1150436

  10. Belgiu M, Csillik O (2018) Sentinel-2 cropland map** using pixel-based and object-based time-weighted dynamic time war** analysis. Remote Sens Environ 204:509–523. https://doi.org/10.1016/J.RSE.2017.10.005

    Article  Google Scholar 

  11. Qu L, Chen Z, Li M, Zhi J, Wang H (2021) Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from google earth engine. Remote Sens 13(3):453. https://doi.org/10.3390/rs13030453

    Article  Google Scholar 

  12. Shahri AA, Spross J, Johansson F, Larsson S (2019) Landslide susceptibility hazard map in southwest sweden using artificial neural network. Catena 183:104225. https://doi.org/10.1016/j.catena.2019.104225

    Article  Google Scholar 

  13. Esetlili MT, Balcik FB, Sanli FB, Kalkan K, Ustuner M, Goksel C, Gazioğlu C, Kurucu Y (2018) Comparison of object and pixel-based classifications for map** crops using rapideye imagery: a case study of menemen plain, turkey. Int J Environ Geoinf 5(2):231–243. https://doi.org/10.30897/ijegeo.442002

  14. Shafizadeh-Moghadam H, Khazaei M, Alavipanah SK, Weng Q (2021) Google earth engine for large-scale land use and land cover map**: An object-based classification approach using spectral, textural and topographical factors. GIScience & Remote Sens 58(6):914–928. https://doi.org/10.1080/15481603.2021.1947623

    Article  Google Scholar 

  15. Yang L, Mansaray LR, Huang J, Wang L (2019) Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sens 11(5):514. https://doi.org/10.3390/rs11050514

    Article  Google Scholar 

  16. Vizzari M (2022) Planetscope, sentinel-2, and sentinel-1 data integration for object-based land cover classification in google earth engine. Remote Sens 14(11):2628. https://doi.org/10.3390/rs14112628

    Article  Google Scholar 

  17. Xue H, Xu X, Zhu Q, Yang G, Long H, Li H, Yang X, Zhang J, Yang Y, Xu S et al (2023) Object-oriented crop classification using time series sentinel images from google earth engine. Remote Sens 15(5):1353. https://doi.org/10.3390/rs15051353

    Article  Google Scholar 

  18. Tassi A, Vizzari M (2020) Object-oriented lulc classification in google earth engine combining snic, glcm, and machine learning algorithms. Remote Sens 12(22):3776. https://doi.org/10.3390/rs12223776

    Article  Google Scholar 

  19. Baatz M, Hoffmann C, Willhauck G (2008) Progressing from object-based to object-oriented image analysis. Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications 29–42. https://doi.org/10.1007/978-3-540-77058-9_2

  20. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogrammetry Remote Sen 65(1):2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  21. De Luca G, Silva J, Cerasoli S, Araújo J, Campos J, Fazio S, Modica G (2019) Object-based land cover classification of cork oak woodlands using uav imagery and orfeo toolbox. Remote Sens 11(10):1238. https://doi.org/10.3390/rs11101238

    Article  Google Scholar 

  22. Solano F, Fazio S, Modica G (2019) A methodology based on geobia and worldview-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int J Appl Earth Observation Geoinf 83:101912. https://doi.org/10.1016/J.JAG.2019.101912

    Article  Google Scholar 

  23. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Article  Google Scholar 

  24. Naik DL, Kiran R (2021) A novel sensitivity-based method for feature selection. J Big Data 8:1–16. https://doi.org/10.1186/s40537-021-00515-w

    Article  Google Scholar 

  25. Ge Y, Zhang X, Atkinson PM, Stein A, Li L (2022) Geoscience-aware deep learning: A new paradigm for remote sensing. Sci Remote Sens 5:100047. https://doi.org/10.1016/j.srs.2022.100047

    Article  Google Scholar 

  26. Ye S, Pontius RG Jr, Rakshit R (2018) A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J Photogrammetry Remote Sens 141:137–147. https://doi.org/10.1016/j.isprsjprs.2018.04.002

    Article  Google Scholar 

  27. Kucharczyk M, Hay GJ, Ghaffarian S, Hugenholtz CH (2020) Geographic object-based image analysis: a primer and future directions. Remote Sens 12(12):2012. https://doi.org/10.3390/rs12122012

    Article  Google Scholar 

  28. Ren X, Malik J (2003) Learning a classification model for segmentation. Proceedings of the IEEE international conference on computer vision 1:10–17. https://doi.org/10.1109/ICCV.2003.1238308

    Article  Google Scholar 

  29. Hossain MD, Chen D (2019) Segmentation for object-based image analysis (obia): A review of algorithms and challenges from remote sensing perspective. ISPRS J Photogrammetry Remote Sens 150:115–134. https://doi.org/10.1016/j.isprsjprs.2019.02.009

    Article  Google Scholar 

  30. Albalawi EK (2023) Comparing pixel-based to object-based image classifications for assessing lulc change in an arid environment of northern west saudi arabia. Egyptian J Environ Change https://doi.org/10.21608/ejec.2023.286642

  31. Balha A, Mallick J, Pandey S, Gupta S, Singh CK (2021) A comparative analysis of different pixel and object-based classification algorithms using multi-source high spatial resolution satellite data for lulc map**. Earth Sci Inf 14(4):2231–2247. https://doi.org/10.1007/s12145-021-00685-4

  32. Stutz D, Hermans A, Leibe B (2018) Superpixels: An evaluation of the state-of-the-art. Computer Vision and Image Understanding 166:1–27. https://doi.org/10.1016/J.CVIU.2017.03.007

    Article  Google Scholar 

  33. Story M, Congalton RG (2023) Accuracy Assessment: A User’s Perspective. http://www.spatialanalysisonline.com/output/html/AccuracyAssessment.html. Accessed on April 12, 2023

  34. Fujita H, Gaeta A, Loia V, Orciuoli F (2018) Resilience analysis of critical infrastructures: a cognitive approach based on granular computing. IEEE Trans Cybernetics 49(5):1835–1848. https://doi.org/10.1109/TCYB.2018.2815178

    Article  Google Scholar 

  35. Liu H, Li W, Li R (2017) A comparative analysis of granular computing clustering from the view of set. J Intell & Fuzzy Syst 32(1):509–519. https://doi.org/10.3233/JIFS-152327

    Article  Google Scholar 

  36. Yao Y (2004) A partition model of granular computing. In: Transactions on Rough Sets I: James F. Peters-Andrzej Skowron, Editors-in-Chief, Springer, Berlin, Heidelberg, pp 232–253. https://doi.org/10.1007/978-3-540-27794-1_11

  37. Saitta L, Zucker J-D (1998) Semantic abstraction for concept representation and learning. In: Proceedings of the symposium on abstraction, reformulation and approximation, pp 103–120

  38. Hall-Beyer M (2017) GLCM texture: A tutorial v. 3.0 March 2017. https://prism.ucalgary.ca/handle/1880/51900. Accessed on April 14, 2023

  39. Kupidura P (2019) The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens 11(10):1233. https://doi.org/10.3390/rs11101233

    Article  Google Scholar 

  40. Zhang P (2019) A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Appl Soft Comput 85:105859. https://doi.org/10.1016/j.asoc.2019.105859

    Article  Google Scholar 

  41. Abbaszadeh Shahri A, Chunling S, Larsson S (2023) A hybrid ensemble-based automated deep learning approach to generate 3d geo-models and uncertainty analysis. Eng Comput 1–16. https://doi.org/10.1007/s00366-023-01852-5

  42. ** Y, Liu X, Chen Y, Liang X (2018) Land-cover map** using random forest classification and incorporating ndvi time-series and texture: a case study of central shandong. Int J Remote Sens 39(23):8703–8723. https://doi.org/10.1080/01431161.2018.1490976

    Article  Google Scholar 

  43. Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, Moghaddam SHA, Mahdavi S, Ghahremanloo M, Parsian S et al (2020) Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J Selected Topics Appl Earth Observations Remote Sens 13:5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052

    Article  Google Scholar 

  44. Liu L, ** crop** intensity in china using time series landsat and sentinel-2 images and google earth engine. Remote Sens Environ 239:111624. https://doi.org/10.1016/j.rse.2019.111624

    Article  Google Scholar 

  45. Rikimaru A, Roy P, Miyatake S et al (2002) Tropical forest cover density map**. Tropical Ecology (India) 43(1)

  46. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically map** urban areas from tm imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  47. Rouse JW, Haas RH, Schell JA, Deering DW et al (1974) Monitoring vegetation systems in the great plains with erts. NASA Spec Publ 351(1):309

  48. Mileva N, Mecklenburg S, Gascon F (2018) New tool for spatio-temporal image fusion in remote sensing: a case study approach using sentinel-2 and sentinel-3 data. Image and Signal Processing for Remote Sensing XXIV, SPIE 10789:198–208. https://doi.org/10.1117/12.2327091

    Article  Google Scholar 

  49. Pinheiro G, Minz S (2023) Image quality assessment of spatiotemporal image fusion: A case study approach using landsat-8 and sentinel-2. In: 43rd Asian Conference on Remote Sensing 2022 (ACRS2022) (2022). Accessed on March 23, 2023. https://aar-s.org/proceeding/ACRS2022/ACRS22_150.pdf

  50. Pinheiro G, Minz S (2023) Image quality evaluation of various pan-sharpening techniques using landsat-8 imagery. In: Ramdane-Cherif A, Singh TP, Tomar R, Choudhury T, Um J-S (eds.) Machine intelligence and data science applications, Springer, Singapore, pp 391–403. https://doi.org/10.1007/978-981-99-1620-7_31

  51. Raj A, Minz S (2022) Spatial granule based clustering technique for hyperspectral images. In: MysuruCon 2022 - 2022 IEEE 2nd Mysore sub section international conference. https://doi.org/10.1109/MYSURUCON55714.2022.9972609

  52. Yao J, Vasilakos AV, Pedrycz W (2013) Granular computing: Perspectives and challenges. IEEE Trans Cybernetics 43(6):1977–1989. https://doi.org/10.1109/TSMCC.2012.2236648

    Article  Google Scholar 

  53. Butenkov S, Zhukov A, Nagorov A, Krivsha N (2017) Granular computing models and methods based on the spatial granulation. Procedia Comput Sci 103:295–302. https://doi.org/10.1016/J.PROCS.2017.01.111

    Article  Google Scholar 

  54. Pedrycz W (2001) Granular computing: An introduction. Annual Conference of the North American fuzzy information processing society - NAFIPS 3:1349–1354. https://doi.org/10.1109/NAFIPS.2001.943745

    Article  Google Scholar 

  55. Yao Y (1996) Two views of the theory of rough sets in finite universes. Int J Approximate Reason 15(4):291–317. https://doi.org/10.1016/S0888-613X(96)00071-0

    Article  MathSciNet  Google Scholar 

  56. Achanta R, Süsstrunk S (2017) Superpixels and polygons using simple non-iterative clustering. In: IEEE Conference on computer vision and pattern recognition, IEEE, pp 4651–4660. https://doi.org/10.1109/CVPR.2017.520 Accessed on April 11, 2023

  57. Dang TH, Mai DS, Ngo LT (2019) Multiple kernel collaborative fuzzy clustering algorithm with weighted super-pixels for satellite image land-cover classification. Eng Appl Artif Intell 85:85–98. https://doi.org/10.1016/J.ENGAPPAI.2019.05.004

    Article  Google Scholar 

  58. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst, Man, Cybernetics. SMC-3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

  59. Breiman L (2001) Random forests. Machine Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324/METRICS

    Article  Google Scholar 

  60. Maxwell AE, Strager MP, Warner TA, Ramezan CA, Morgan AN, Pauley CE (2019) Large-area, high spatial resolution land cover map** using random forests, geobia, and naip orthophotography: Findings and recommendations. Remote Sens 11(12):1409. https://doi.org/10.3390/rs11121409

    Article  Google Scholar 

  61. Pan X, Wang Z, Gao Y, Dang X, Han Y (2022) Detailed and automated classification of land use/land cover using machine learning algorithms in google earth engine. Geocarto Int 37(18):5415–5432. https://doi.org/10.1080/10106049.2021.1917005

    Article  Google Scholar 

  62. Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B (2020) Google earth engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J Photogrammetry Remote Sens 164:152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001

    Article  Google Scholar 

  63. Belgiu M, Drăgu L (2016) Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogrammetry Remote Sens 114:24–31. https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011

  64. Chen W, **e X, Wang J, Pradhan B, Hong H, Tien Bui D, Duan Z, Ma J (2016) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Environ Earth Sci 75(2):1–13. https://doi.org/10.1007/s12665-015-5235-0

    Article  Google Scholar 

  65. Mahdianpari M, Salehi B, Mohammadimanesh F, Motagh M (2017) Random forest wetland classification using alos-2 l-band, radarsat-2 c-band, and terrasar-x imagery. ISPRS J Photogrammetry Remote Sens 130:13–31. https://doi.org/10.1016/j.isprsjprs.2017.05.010

    Article  Google Scholar 

  66. **a J, Falco N, Benediktsson JA, Du P, Chanussot J (2017) Hyperspectral image classification with rotation random forest via kpca. IEEE J Selected Topics Appl Earth Observations Remote Sens 10(4):1601–1609. https://doi.org/10.1109/JSTARS.2016.2636877

    Article  Google Scholar 

  67. Sousa C, Fatoyinbo L, Neigh C, Boucka F, Angoue V, Larsen T (2020) Cloud-computing and machine learning in support of country-level land cover and ecosystem extent map** in liberia and gabon. PLoS One 15(1):0227438. https://doi.org/10.1371/journal.pone.0227438

    Article  Google Scholar 

  68. Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A (2008) A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the congo basin. Remote Sens Environ 112(5):2495–2513. https://doi.org/10.1016/j.rse.2007.11.012

    Article  Google Scholar 

  69. Bwangoy J-RB, Hansen MC, Roy DP, De Grandi G, Justice CO (2010) Wetland map** in the congo basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114(1):73–86. https://doi.org/10.1016/j.rse.2009.08.004

    Article  Google Scholar 

  70. Phan TN, Kuch V, Lehnert LW (2020) Land cover classification using google earth engine and random forest classifier–the role of image composition. Remote Sens 12(15):2411. https://doi.org/10.3390/rs12152411

    Article  Google Scholar 

  71. Hosseini SA, Abbaszadeh Shahri A, Asheghi R (2022) Prediction of bedload transport rate using a block combined network structure. Hydrological Sci J 67(1):117–128. https://doi.org/10.1080/02626667.2021.2003367

    Article  Google Scholar 

  72. Kpienbaareh D, Sun X, Wang J, Luginaah I, Kerr RB, Lupafya E, Dakishoni L (2021) Crop type and land cover map** in northern malawi using the integration of sentinel-1, sentinel-2, and planetscope satellite data. Remote Sens 13(4):700. https://doi.org/10.3390/rs13040700

    Article  Google Scholar 

  73. Khadka D, Zhang J (2023) Geographic object-based image analysis (geobia) for landslide identification using machine learning on google earth engine (gee). PREPRINT. Version 1. https://doi.org/10.21203/rs.3.rs-3299903/v1

  74. Selvaraj R, Amali DGB (2023) Assessment of object-based classification for map** land use and land cover using google earth. Global NEST J 25(7):131–138. https://doi.org/10.30955/gnj.004829

  75. Sudianto S, Herdiyeni Y, Prasetyo LB (2023) Classification of sugarcane area using landsat 8 and random forest based on phenology knowledge. JOIV: Int J Inf Visualization 7(3-2):1974–1981. https://doi.org/10.30630/joiv.7.3-2.1401

  76. Yang L, Wang L, Abubakar GA, Huang J (2021) High-resolution rice map** based on snic segmentation and multi-source remote sensing images. Remote Sens 13(6):1148. https://doi.org/10.3390/rs13061148

    Article  Google Scholar 

  77. Zeng Q, **e Y, Liu K (2019) Assessment of the patterns of urban land covers and impervious surface areas: A case study of shenzhen, china. Physics and Chemistry of the Earth, Parts A/B/C. 110:1–7. https://doi.org/10.1016/j.pce.2019.04.002

  78. Hall-Beyer M (2017) Practical guidelines for choosing glcm textures to use in landscape classification tasks over a range of moderate spatial scales. Remote Sens 9(12):1230. https://doi.org/10.3390/rs9121230

    Article  Google Scholar 

  79. Pinheiro G, Rather IH, Raj A, Minz S, Kumar S (2024) Image quality assessment of multi-satellite pan-sharpening approach: A case study using sentinel-2 synthetic panchromatic image and landsat-8. EAI Endorsed Trans Scalable Inf Syst. https://doi.org/10.4108/eetsis.5496

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GP and SM; Methodology, Experiments, Validation, and Formal Analysis, GP; Resources and Supervision, SM; Writing- Original Draft, GP; Proofreading and Editing, GP,SM;

Corresponding author

Correspondence to Greetta Pinheiro.

Ethics declarations

Conflicts of interest

The authors have no relevant financial interests in the manuscript and no other potential conflicts of interest to disclose.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, G., Minz, S. Granular computing based segmentation and textural analysis (GrCSTA) framework for object-based LULC classification of fused remote sensing images. Appl Intell 54, 5748–5767 (2024). https://doi.org/10.1007/s10489-024-05469-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05469-z

Keywords

Navigation