Log in

Musical Neurofeedback Advancements, Feedback Modalities, and Applications: A Systematic Review

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The field of EEG-Neurofeedback (EEG-NF) training has showcased significant promise in treating various mental disorders, while also emerging as a cognitive enhancer across diverse applications. The core principle of EEG-NF involves consciously guiding the brain in desired directions, necessitating active engagement in neurofeedback (NF) tasks over an extended period. Music listening tasks have proven to be effective stimuli for such training, influencing emotions, mood, and brainwave patterns. This has spurred the development of musical NF systems and training protocols. Despite these advancements, there exists a gap in systematic literature that comprehensively explores and discusses the various modalities of feedback mechanisms, its benefits, and the emerging applications. Addressing this gap, our review article presents a thorough literature survey encompassing studies on musical NF conducted over the past decade. This review highlights the several benefits and applications ranging from neurorehabilitation to therapeutic interventions, stress management, diagnostics of neurological disorders, and sports performance enhancement. While acknowledged for advantages and popularity of musical NF, there is an opportunity for growth in the literature in terms of the need for systematic randomized controlled trials to compare its effectiveness with other modalities across different tasks. Addressing this gap will involve develo** standardized methodologies for studying protocols and optimizing parameters, presenting an exciting prospect for advancing the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. https://braintap.com.

  2. https://neurosky.com.

  3. https://www.emotiv.com.

  4. https://www.tryhealium.com.

  5. https://getversus.com.

  6. https://openbci.com.

  7. https://neuphony.com.

  8. https://osf.io/2cqa5/; https://cvml.unige.ch/databases/emoMusic.

References

  • Alexander, F. (2018). Stress co** via musical neurofeedback. Advances in Mind-Body Medicine, 32(2), 17–20.

    PubMed  Google Scholar 

  • Bhargava, A., O’Shaughnessy, K., & Mann, S. (2020). A Novel Approach to EEG Neurofeedback via Reinforcement Learning. Proceedings of IEEE Sensors, 2020-Octob, 20–23. https://doi.org/10.1109/SENSORS47125.2020.9278871.

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818–11823. https://doi.org/10.1073/pnas.191355898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bocanegra-Pérez, Á. J., Velasquez-Perez, J. L., Martinez-Diaz, L. V., Cárdenas-Poveda, C., Rizo-Arévalo, A., & López, J. M. L. (2020). Music-based neurofeedback system for stress regulation and memory stimulation. 16th International Symposium on Medical Information Processing and Analysis, 11583, 258–271.

  • Bucho, T., Caetano, G., Vourvopoulos, A., Accoto, F., Esteves, I., Badia, I., Rosa, S. B., A., & Figueiredo, P. (2019). Comparison of visual and auditory modalities for Upper-Alpha EEG-Neurofeedback. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5960–5966. https://doi.org/10.1109/EMBC.2019.8856671.

  • Castillo-Reyes, I. J., & Cruz-Bermúdez, N. D. (2023). Effects of combined SMR neurofeedback and music listening on executive function and emotional regulation in Hispanic/Latino Polydrug users. NeuroRegulation, 10(2), 62–77. https://doi.org/10.15540/nr.10.2.62.

  • Cho, M. K., Jang, H. S., Jeong, S. H., Jang, I. S., Choi, B. J., & Lee, M. G. T. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport, 19(3), 315–317. https://doi.org/10.1097/WNR.0b013e3282f4f022.

    Article  PubMed  Google Scholar 

  • Cossy, N., Tzovara, A., Simonin, A., Rossetti, A. O., & De Lucia, M. (2014). Robust discrimination between EEG responses to categories of environmental sounds in early coma. Frontiers in Psychology, 5(FEB), 1–13. https://doi.org/10.3389/fpsyg.2014.00155.

    Article  Google Scholar 

  • Dekker, M. K. J., Van den Berg, B. R., Denissen, A. J. M., Sitskoorn, M. M., & van Boxtel, G. J. M. (2014). Feasibility of eyes open alpha power training for mental enhancement in elite gymnasts. Journal of Sports Sciences, 32(16), 1550–1560. https://doi.org/10.1080/02640414.2014.906044.

    Article  PubMed  Google Scholar 

  • Deuel, T. A., Pampin, J., Sundstrom, J., & Darvas, F. (2017). The encephalophone: A novel musical biofeedback device using conscious control of electroencephalogram (EEG). Frontiers in Human Neuroscience, 11(April), 1–8. https://doi.org/10.3389/fnhum.2017.00213.

    Article  Google Scholar 

  • Eaton, J., Williams, D., & Miranda, E. (2014). Affective jukebox: A confirmatory study of EEG emotional correlates in response to musical stimuli. Proceedings – 40th International Computer Music Conference, ICMC 2014 and 11th Sound and Music Computing Conference, SMC 2014 - Music Technology Meets Philosophy: From Digital Echos to Virtual Ethos, September, 580–585.

  • Ehrlich, S., Guan, C., & Cheng, G. (2017). A closed-loop brain-computer music interface for continuous affective interaction. Proceedings of the 2017 International Conference on Orange Technologies ICOT 2017, 2018-Janua, 176–179. https://doi.org/10.1109/ICOT.2017.8336116.

    Article  Google Scholar 

  • Elgendi, M. (2014). From Auditory and Visual to Immersive Neurofeedback: Application to Diagnosis of Alzheimer’s Disease In: Yang, Z. (Eds.) Neural Computation, Neural Devices, and Neural Prosthesis.

  • Fedotchev, A., Ivanovitch, Oh, S. J., & Semikin, G. I. (2014). Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders. Sovremennye Tehnologii v Medicine, 6(3), 60–62.

    Google Scholar 

  • Fedotchev, A. I., Bondar’, A. T., Bakhchina, A. V., Parin, S. B., Polevaya, S. A., & Radchenko, G. S. (2017). Effects of musical acoustic signals controlled by the subject’s EEG oscillators. Neuroscience and Behavioral Physiology, 47(1), 47–51. https://doi.org/10.1007/s11055-016-0365-z.

    Article  Google Scholar 

  • Fedotchev, A., Kruk, V., Oh, S. J., & Semikin, G. (2018). Eliminating pain-induced risks of operator reliability via transcutaneous electroneurostimulation controlled by patient’s breathing. International Journal of Industrial Ergonomics, 68(May 2017), 256–259. https://doi.org/10.1016/j.ergon.2018.08.004.

    Article  Google Scholar 

  • Fedotchev, A. I., Zemlyanaya, A. A., Savchuk, L. V., & Polevaya, S. A. (2019). Neurointerface with double feedback from subject’s EEG for correction of stress-induced states. Sovremennye Tehnologii v Medicine, 11(1), 150–154. https://doi.org/10.17691/stm2019.11.1.17.

    Article  Google Scholar 

  • Fernández, T., Bosch-Bayard, J., Harmony, T., Caballero, M. I., Díaz-Comas, L., Galán, L., Ricardo-Garcell, J., Aubert, E., & Otero-Ojeda, G. (2016). Neurofeedback in Learning Disabled children: Visual versus auditory reinforcement. Applied Psychophysiology Biofeedback, 41(1), 27–37. https://doi.org/10.1007/s10484-015-9309-6.

    Article  PubMed  Google Scholar 

  • Ford, N. L., Wyckoff, S. N., & Sherlin, L. H. (2016). Neurofeedback and mindfulness in peak performance training among athletes. Biofeedback, 44(3), 152–159.

    Article  Google Scholar 

  • Fox, D. J., Tharp, D. F., & Fox, L. C. (2005). Neurofeedback: An alternative and efficacious treatment for attention deficit hyperactivity disorder. Applied Psychophysiology Biofeedback, 30(4), 365–373. https://doi.org/10.1007/s10484-005-8422-3.

    Article  PubMed  Google Scholar 

  • Glassman, H., Dwyer, D., John, N., Laesker, D., & So, M. (2022). Affective brain-computer music interface in emotion regulation and Neurofeedback: A Research Protocol. Undergraduate Research in Natural and Clinical Sciences and Technology Journal, 6(5), 1–9. https://doi.org/10.26685/urncst.345.

    Article  Google Scholar 

  • Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 44, 124–141. https://doi.org/10.1016/j.neubiorev.2013.09.015.

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. J. L., & Ros, T. (2014a). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological Psychology, 95(1), 86–95. https://doi.org/10.1016/j.biopsycho.2013.04.005.

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H., Hirst, L., Holmes, P., & Leach, J. (2014b). Immediate effects of alpha/theta and sensory-motor rhythm feedback on music performance. International Journal of Psychophysiology, 93(1), 96–104. https://doi.org/10.1016/j.ijpsycho.2014.03.009.

    Article  PubMed  Google Scholar 

  • Hammond, D. C. (2005). Neurofeedback with anxiety and affective disorders. Child and Adolescent Psychiatric Clinics of North America, 14(1 SPEC.ISS.), 105–123. https://doi.org/10.1016/j.chc.2004.07.008.

    Article  PubMed  Google Scholar 

  • Hammond at el. (2001). Journal of Neurotherapy: Investigations in neuromodulation, neurofeedback and applied neuroscience. Journal of Neurotherapy, 14(65), 37–41. https://doi.org/10.1300/J184v04n04.

    Article  Google Scholar 

  • Han, X. (2020). Neurofeedback mechanism of music features on mental health development of adolescents. Revista Argentina De Clinica Psicologica, 29(2), 422–427. https://doi.org/10.24205/03276716.2020.258.

    Article  Google Scholar 

  • Hanna-Pladdy, B., & MacKay, A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25(3), 378–386. https://doi.org/10.1037/a0021895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatfield, B., Haufler, A., & Contreras-Vidal, J. (2009). Brain processes and neurofeedback for performance enhancement of precision motor behavior. Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience: 5th International Conference, FAC 2009 Held as Part of HCI International 2009 San Diego, CA, USA, July 19–24, 2009 Proceedings 5, 810–817.

  • Hirshkowitz, M., Earle, J., & Paley, B. (1978). EEG alpha asymmetry in musicians and non-musicians: A study of hemispheric specialization. Neuropsychologia, 16(1), 125–128. https://doi.org/10.1016/0028-3932(78)90052-0.

    Article  PubMed  Google Scholar 

  • Hunkin, H., King, D. L., & Zajac, I. T. (2021). EEG Neurofeedback during focused attention meditation: Effects on State Mindfulness and Meditation experiences. Mindfulness, 12(4), 841–851. https://doi.org/10.1007/s12671-020-01541-0.

    Article  Google Scholar 

  • Husa, P., Kaplan, C., & Mikovec, Z. (2022). Towards modular sonic EEG neurofeedback interface. 2022 13th IEEE International Conference on Cognitive Infocommunications CogInfoCom 2022, 19–20. https://doi.org/10.1109/CogInfoCom55841.2022.10081815.

  • J, M. Page, E, J. McKenzie, M, P. Bossuyt,, I. Boutron, C, T. Hoffmann, D, C. Mulrow,, L. Shamseer, M, J. Tetzlaff, A, E. Akl, E, S. Brennan,, R. Chou,, J. Glanville, M, J. Grimshaw,, A. Hróbjartsson, M, M. Lalu,, T. Li, W, E. Loder,, E. Mayo-Wilson,, S. McDonald, &, D. Moher (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71.

  • Kamiya, J. (1968). Conscious control of brain waves. Psychology Today, 1, 56–60.

    Google Scholar 

  • Keller, I., & Garbacenkaite, R. (2015). Neurofeedback in three patients in the state of unresponsive wakefulness. Applied Psychophysiology Biofeedback, 40(4), 349–356. https://doi.org/10.1007/s10484-015-9296-7.

    Article  PubMed  Google Scholar 

  • Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–180. https://doi.org/10.1038/nrn3666.

    Article  PubMed  Google Scholar 

  • Koelsch, S., Grossmann, T., Gunter, T. C., Hahne, A., Schröger, E., & Friederici, A. D. (2003). Children Processing Music: Electric brain responses reveal musical competence and gender differences. Journal of Cognitive Neuroscience, 15(5), 683–693. https://doi.org/10.1162/089892903322307401.

    Article  PubMed  Google Scholar 

  • Lee, C. S. C., Chen, T., Gao, Q., Hua, C., Song, R., & Huang, X. (2023). The effects of Theta/Beta-based Neurofeedback Training on attention in children with attention deficit hyperactivity disorder: A systematic review and Meta-analysis. Child Psychiatry and Human Development, 54(6), 1577–1606. https://doi.org/10.1007/s10578-022-01361-4.

    Article  PubMed  Google Scholar 

  • Loui, P., Koplin-Green, M., & Massone, F. M. M. (2014). Rapidly learned identification of epileptic seizures from sonified EEG. Frontiers in Human Neuroscience, 8, 1–9. https://doi.org/10.3389/fnhum.2014.00820.

    Article  Google Scholar 

  • May, G., Benson, R., Balon, R., & Boutros, N. (2013). Neurofeedback and traumatic brain injury: A literature review. Annals of Clinical Psychiatry, 25(4), 289–296.

    PubMed  Google Scholar 

  • McIntosh, T. H., Weinel, J., & Cunningham, S. (2022). Lundheim: exploring affective audio techniques in an action-adventure video game. In ACM International Conference Proceeding Series (Vol. 1, Issue 1). Association for Computing Machinery. https://doi.org/10.1145/3561212.3561234.

  • Mori, K., & Iwanaga, M. (2017). Two types of peak emotional responses to music: The psychophysiology of chills and tears. Scientific Reports, 7(September 2016), 1–13. https://doi.org/10.1038/srep46063.

  • Munoz-Gonzalez, A., Kobayashi, S., & Horie, R. (2022). A multiplayer vr live concert with information exchange through feedback modulated by EEG signals. IEEE Transactions on Human-Machine Systems, 52(2), 248–255. https://doi.org/10.1109/THMS.2021.3134555.

    Article  Google Scholar 

  • Nawaz, R., Nisar, H., Yap, V. V., & Tsai, C. Y. (2022). The effect of alpha neurofeedback training on cognitive performance in healthy adults. Mathematics, 10(7). https://doi.org/10.3390/math10071095.

  • Phneah, S. W., & Nisar, H. (2017). EEG-based alpha neurofeedback training for mood enhancement. Australasian Physical and Engineering Sciences in Medicine, 40(2), 325–336. https://doi.org/10.1007/s13246-017-0538-2.

    Article  PubMed  Google Scholar 

  • Ramirez, R., Palencia-Lefler, M., Giraldo, S., & Vamvakousis, Z. (2015). Musical neurofeedback for treating depression in elderly people. Frontiers in Neuroscience, 9(OCT), 1–10. https://doi.org/10.3389/fnins.2015.00354.

    Article  Google Scholar 

  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714.

    Article  Google Scholar 

  • Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464. https://doi.org/10.1016/j.chc.2014.03.001.

    Article  PubMed  Google Scholar 

  • Takabatake, K., Kunii, N., Nakatomi, H., Shimada, S., Yanai, K., Takasago, M., & Saito, N. (2021). Musical auditory alpha Wave Neurofeedback: Validation and cognitive perspectives. Applied Psychophysiology Biofeedback, 46(4), 323–334. https://doi.org/10.1007/s10484-021-09507-1.

    Article  PubMed  Google Scholar 

  • Thoma, M. V., Marca, L., Brönnimann, R., Finkel, R., Ehlert, L., U., & Nater, U. M. (2013). The effect of music on the human stress response. Plos One, 8(8), 1–12. https://doi.org/10.1371/journal.pone.0070156.

    Article  Google Scholar 

  • Tseng, K. C., Lin, B. S., Wong, A. M. K., & Lin, B. S. (2015). Design of a mobile brain computer interface-based smart multimedia controller. Sensors (Switzerland), 15(3), 5518–5530. https://doi.org/10.3390/s150305518.

    Article  Google Scholar 

  • Tzovara, A., & De Lucia, M. (2019). Can the brain of a patient in a Coma React to sounds? Frontiers for Young Minds, 7(February), 1–6. https://doi.org/10.3389/frym.2019.00019.

    Article  Google Scholar 

  • Van Boxtel, G. J. M., Denissen, A. J. M., Jäger, M., Vernon, D., Dekker, M. K. J., Mihajlović, V., & Sitskoorn, M. M. (2012). A novel self-guided approach to alpha activity training. International Journal of Psychophysiology, 83(3), 282–294. https://doi.org/10.1016/j.ijpsycho.2011.11.004.

    Article  PubMed  Google Scholar 

  • Wyrwicka, W., & Sterman, M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology and Behavior, 3(5), 703–707. https://doi.org/10.1016/0031-9384(68)90139-X.

    Article  Google Scholar 

  • Xu, S., & Wang, Z. (2021). Diffusion: Emotional visualization based on biofeedback control by eeg: Feeling, listening, and touching the real things through human brainwave activity. Artnodes, 2021(28), 1–11. https://doi.org/10.7238/a.v0i28.385717.

    Article  Google Scholar 

  • Zatorrea, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(SUPPL2), 10430–10437. https://doi.org/10.1073/pnas.1301228110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. B. and D.K. conceptualized the review, formulated the research questions, and conducted the screening of articles based on abstract and title. They also took charge of manuscript writing. P.S. performed a thorough review of the manuscript draft, offering valuable feedback and insights, contributing significantly to the intellectual content and overall structure of the article. S.S., in collaboration with P.B., conducted the literature search and screening of articles based on eligibility criteria. Both played crucial roles in the critical review of selected articles. All authors actively participated in the revision process of the manuscript.

Corresponding author

Correspondence to Deepesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, P., Shah, P., Sinha, S. et al. Musical Neurofeedback Advancements, Feedback Modalities, and Applications: A Systematic Review. Appl Psychophysiol Biofeedback (2024). https://doi.org/10.1007/s10484-024-09647-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10484-024-09647-0

Keywords

Navigation