Log in

High-order targeted essentially non-oscillatory scheme for two-fluid plasma model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The weakly ionized plasma flows in aerospace are commonly simulated by the single-fluid model, which cannot describe certain nonequilibrium phenomena by finite collisions of particles, decreasing the fidelity of the solution. Based on an alternative formulation of the targeted essentially non-oscillatory (TENO) scheme, a novel high-order numerical scheme is proposed to simulate the two-fluid plasmas problems. The numerical flux is constructed by the TENO interpolation of the solution and its derivatives, instead of being reconstructed from the physical flux. The present scheme is used to solve the two sets of Euler equations coupled with Maxwell’s equations. The numerical methods are verified by several classical plasma problems. The results show that compared with the original TENO scheme, the present scheme can suppress the non-physical oscillations and reduce the numerical dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG, X. Y., HONG, Q. Z., HU, Y., and SUN, Q. H. On the accuracy of two-temperature models for hypersonic nonequilibrium flow. Acta Mechanica Sinica, 39(2), 122–193 (2023)

    Article  MathSciNet  Google Scholar 

  2. TU, G. H., CHEN, J. Q., YUAN, X. X., QING, T., DUAN, M. C., YANG, Q., DUAN, Y., CHEN, X., WAN, B. B., and XIANG, X. H. Progress in flight tests of hypersonic boundary layer transition. Acta Mechanica Sinica, 37(11), 1589–1609 (2022)

    Article  Google Scholar 

  3. CHEN, X. L. and FU, S. Progress in the research of hypersonic and highenthalpy boundary layer instabilities and transition. Chinese Journal of Theoretical and Applied Mechanics (in Chinese), 54(11), 2937–2957 (2022)

    Google Scholar 

  4. ZHENG, X. J. and WANG, G. H. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics (in Chinese), 50(1), 202001 (2020)

    Google Scholar 

  5. BRAGINSKII, S. I. Transport processes in a plasma. Reviews of Plasma Physics, 1(205), 205–311 (1965)

    Google Scholar 

  6. NAGATA, Y., OTSU, H., YAMADA, K., and ABE, T. Influence of Hall effect on electrodynamic flow control for weakly ionized flow. 43rd AIAA Plasmadynamics and Lasers Conference, Currans Associates, Inc., NewYork, 38–47 (2012)

    Google Scholar 

  7. STARR, S. C. and HOFFMANN, K. A. Parallel implementation for an MHD solver with equilibrium chemistry. AIAA Aviation 2020 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 35–50 (2020)

    Google Scholar 

  8. OTSU, H., KONIGORSKI, D., and ABE, T. Influence of Hall effect on electrodynamic heat shield system for reentry vehicles. AIAA Journal, 48(10), 2177–2186 (2010)

    Article  Google Scholar 

  9. CAI, Z. G., PAN, J. H., and NI, M. J. The evolution and instability of wake structure around an impulsively stopped sphere with a streamwise magnetic field for 600 ≼ Re ≼ 1400. Acta Mechanica Sinica, 38(10), 322070 (2022)

    Article  Google Scholar 

  10. WAINI, I., ISHAK, A., and POP, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics (English Edition), 41(3), 507–520 (2020) https://doi.org/10.1007/s10483-020-2584-7

    Article  MathSciNet  Google Scholar 

  11. PENG, S. H., JIN, K., and ZHENG, X. J. Study on validity of low-magnetic-Reynolds-number assumption for hypersonic magnetohydrodynamic control. AIAA Journal, 60(12), 6536–6547 (2022)

    Article  Google Scholar 

  12. MACCORMACK, R., D’AMBROSIO, D., GIORDANO, D., LEE, J. K., and KIM, T. Plasmady-namic simulations with strong shock waves. 42nd AIAA Plasmadynamics and Lasers Conference in conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD), Currans Associates, Inc., NewYork, 3921 (2011)

    Google Scholar 

  13. LEE, J. K., KIM, T., and MACCORMACK, R. W. Simulation of hypersonic flow within electromagnetic fields for heat flux mitigation. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics, Inc., Reston, 3503 (2015)

    Google Scholar 

  14. ALVAREZ LAGUNA, A., LANI, A., DECONINCK, H., MANSOUR, N. N., and POEDTS, S. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes. Journal of Computational Physics, 318, 252–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. ZHANG, F., POEDTS, S., LANI, A., KUZMA, B., and MURAWSKI, K. Two-fluid modeling of acoustic wave propagation in gravitationally stratified isothermal media. The Astrophysical Journal, 911(2), 119 (2021)

    Article  Google Scholar 

  16. LEAKE, J. E., LUKIN, V. S., and LINTON, M. G. Magnetic reconnection in a weakly ionized plasma. Physics of Plasmas, 20(6), 061202 (2013)

    Article  Google Scholar 

  17. NI, L., JI, H., MURPHY, N. A., and JARA-ALMONTE, J. Magnetic reconnection in partially ionized plasmas. Proceedings of the Royal Society A, 476(2236), 20190867 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. POPESCU BRAILEANU, B., LUKIN, V. S., KHOMENKO, E., and DE VICENTE, Á. Two-fluid simulations of waves in the solar chromosphere, I: numerical code verification. Astronomy & Astrophysics, 627, A25 (2019)

    Article  Google Scholar 

  19. MANEVA, Y. G., ALVAREZ LAGUNA, A., LANI, A., and POEDTS, S. Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: effects of impact ionization and radiative recombination. The Astrophysical Journal, 836(2), 197 (2017)

    Article  Google Scholar 

  20. FUJINO, T., YOSHINO, T., and ISHIKAWA, M. Numerical analysis of reentry trajectory coupled with magnetohydrodynamics flow control. Journal of Spacecraft and Rockets, 45(5), 911–920 (2008)

    Article  Google Scholar 

  21. PLEKHANOV, A. V. Some features of plasma bunches throwing to hypervelocities in a magnetoplasma accelerator. IEEE Transactions on Plasma Science, 48(5), 1279–1282 (2020)

    Article  Google Scholar 

  22. KAVA, T., EVANS, J., and BOYD, I. D. Numerical simulation of electron-beam powered plasma fueled engines. AIAA Propulsion and Energy 2021 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 3241 (2021)

    Google Scholar 

  23. KAVA, T., EVANS, J. A., and BOYD, I. D. Three-dimensional numerical analysis of plasma fueled engines. AIAA Aviation 2022 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 3348 (2022)

    Google Scholar 

  24. HILLIER, A., TAKASAO, S., and NAKAMURA, N. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma. Astronomy & Astrophysics, 591, A112 (2016)

    Article  Google Scholar 

  25. PHUONG, L. L. A Numerical Study of Partially Ionised Plasma Using a 2D Two-Fluid Magne-tohydrodynamic Code, Ph. D. dissertation, University of Northumbria at Newcastle, Newcastle, United Kingdom, 17–139 (2020)

    Google Scholar 

  26. JIANG, G. S. and WU, C. C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 150(2), 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. LI, F. and SHU, C. W. Locally divergence-free discontinuous Galerkin methods for MHD equations. Journal of Scientific Computing, 22–23, 413–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. BALSARA, D. S. and SPICER, D. S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. Journal of Computational Physics, 149(2), 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. BALSARA, D. S. and DUMBSER, M. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. Journal of Computational Physics, 299, 687–715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. YANG, Y., WAN, M. P., SHI, Y. P., YANG, K., and CHEN, S. Y. A hybrid scheme for compressible magnetohydrodynamic turbulence. Journal of Computational Physics, 306, 73–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. CHRISTLIEB, A. J., FENG, X., JIANG, Y., and TANG, Q. A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM Journal on Scientific Computing, 40(4), A2631–A2666 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. FU, L. and TANG, Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydro-dynamics. Journal of Scientific Computing, 80(1), 692–716 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. SHUMLAK, U., LILLY, R., REDDELL, N., SOUSA, E., and SRINIVASAN, B. Advanced physics calculations using a multi-fluid plasma model. Computer Physics Communications, 182(9), 1767–1770 (2011)

    Article  MathSciNet  Google Scholar 

  34. SOUSA, E. M. and SHUMLAK, U. A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model. Journal of Computational Physics, 326, 56–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. BALSARA, D. S., AMANO, T., GARAIN, S., and KIM, J. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. Journal of Computational Physics, 318, 169–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. CROFT, K. A. and MOELLER, T. M. Validation of an SUPG finite element solver for the two-fluid plasma model using the Brio-Wu MHD shock tube problem. AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 290–304 (2019)

    Google Scholar 

  37. TÓTH, G. The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational Physics, 161(2), 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. POWELL, K. G. An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Technical Report, ICASE, Langley VA (1994)

    Google Scholar 

  39. EVANS, C. R. and HAWLEY, J. F. Simulation of magnetohydrodynamic flows— a constrained transport method. The Astrophysical Journal, 332(2), 659–677 (1988)

    Article  Google Scholar 

  40. AMANO, T. Divergence-free approximate Riemann solver for the quasi-neutral two-fluid plasma model. Journal of Computational Physics, 299, 863–886 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. MUNZ, C. D., OMMES, P., and SCHNEIDER, R. A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes. Computer Physics Communications, 130(1–2), 83–117 (2000)

    Article  MATH  Google Scholar 

  42. DEDNER, A., KEMM, F., KRONER, D., MUNZ, C. D., SCHNITZER, T., and WESENBERG, M. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2), 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. LEAKE, J. E., LUKIN, V. S., LINTON, M. G., and MEIER, E. T. Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. The Astrophysical Journal, 760(2), 109 (2012)

    Article  Google Scholar 

  44. MUNZ, C. D., OMNES, P., SCHNEIDER, R., SONNENDRÜCKER, E., and VOß, U. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. Journal of Computational Physics, 161(2), 485–511 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. HAKIM, A., LOVERICH, J., and SHUMLAK, U. A high resolution wave propagation scheme for ideal two-fluid plasma equations. Journal of Computational Physics, 219(1), 418–442 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. FU, L., HU, X. Y., and ADAMS, N. A. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305, 333–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. JIANG, Y., SHU, C. W., and ZHANG, M. P. An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM Journal on Scientific Computing, 35(2), A1137–A1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. YE, C. C., ZHANG, P. J. Y., WAN, Z. H., and SUN, D. J. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws. Computers & Fluids, 238, 105368 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  50. GOTTLIEB, S., SHU, C. W., and TADMOR, E. Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. THOMPSON, R. J., WILSON, A., MOELLER, T., and MERKLE, C. L. A strong conservative Riemann solver for the solution of the coupled Maxwell and Navier-Stokes equations. Journal of Computational Physics, 258, 431–450 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. ALVAREZ LAGUNA, A., OZAK, N., LANI, A., DECONINCK, H., and POEDTS, S. Fully-implicit finite volume method for the ideal two-fluid plasma model. Computer Physics Communications, 231, 31–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. WRIGHT, A. J. and HAWKE, I. A resistive extension for ideal magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 491(4), 5510–5523 (2020)

    Article  Google Scholar 

  54. BRIO, M. and WU, C. C. An upwind differencing scheme for the equations of ideal magnetohy-drodynamics. Journal of Computational Physics, 75(2), 400–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. THOMPSON, R.J., WILSON, A., MOELLER, T., and MERKLE, C.L. Advectedupstream splitting method for the coupled Maxwell and Navier-Stokes equations. AIAA Journal, 53(3), 638–653 (2015)

    Article  Google Scholar 

  56. LEE, D. and DEANE, A. E. An unsplit staggered mesh scheme for multidimensional magnetohy-drodynamics. Journal of Computational Physics, 228(4), 952–975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. KAWAI, S. Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. Journal of Computational Physics, 251, 292–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. FU, L. An efficient low-dissipation high-order TENO scheme for MHD flows. Journal of Scientific Computing, 90(1), 55 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  59. SHEN, Y. Q., ZHA, G. C., and HUERTA, M. A. E-CUSP scheme for the equations of ideal mag-netohydrodynamics with high order WENO scheme. Journal of Computational Physics, 231(19), 6233–6247 (2012)

    Article  MathSciNet  Google Scholar 

  60. SJÖGREEN, B. and YEE, H. A. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. Journal of Computational Physics, 364, 153–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. ORSZAG, S. A. and TANG, C. M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 90(1), 129–143 (1979)

    Article  Google Scholar 

  62. HALPERN, F. D., SFILIGOI, I., KOSTUK, M., STEFAN, R., and WALTZ, R. E. Simulations of plasmas and fluids using anti-symmetric models. Journal of Computational Physics, 445, 110631 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao**g Zheng.

Ethics declarations

Conflict of interest **ao**g ZHENG is an editorial board member for Applied Mathematics and Mechanics (English Edition) and was not involved in the editorial review or the decision to publish this article. The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12072246, 11972272, and 11872286) and the National Numerical Wind Tunnel Project of China (No. NNW2020ZT3-A23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., **, K., Feng, Y. et al. High-order targeted essentially non-oscillatory scheme for two-fluid plasma model. Appl. Math. Mech.-Engl. Ed. 44, 941–960 (2023). https://doi.org/10.1007/s10483-023-3003-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3003-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation