Log in

Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand, a two-step homogenization method is adopted. Based on the distribution of filaments, the superconducting strand can be decomposed into a set of concentric cylinder layers. Each layer is a two-phase composite composed of the twisted filaments and copper matrix. In the first step of homogenization, the representative volume element (RVE) based finite element (FE) homogenization method with the periodic boundary condition (PBC) is adopted to evaluate the effective thermal conductivities of each layer. In the second step of homogenization, the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers. The accuracy of the developed model is validated by comparing with the local and full-field FE simulation. Finally, the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SATPATHY, K., DUCHESNE, A., DUBOIS, C., FAGNARD, J. F., CAPS, H., VANDERBEMDEN, P., and VANDERHEYDEN, B. Study of buoyancy driven heat transport in silicone oils and in liquid nitrogen in view of cooling applications. International Journal of Heat and Mass Transfer, 118, 538–550 (2018)

    Article  Google Scholar 

  2. NAKAMURA, T., TAMADA, D., YANAGI, Y., ITOH, Y., NEMOTO, T., UTUMI, H., and KOSE, K. Development of a superconducting bulk magnet for NMR and MRI. Journal of Magnetic Resonance, 259, 68–75 (2015)

    Article  Google Scholar 

  3. MITCHELL, N., BRESCHI, M., and TRONZA, V. The use of Nb3Sn in fusion: lessons learned from the ITER production including options for management of performance degradation. Superconductor Science and Technology, 33, 054007 (2020)

    Article  Google Scholar 

  4. BOTTURA, L. and MARINUCCI, C. A porous medium analogy for the helium flow in CICCs. International Journal of Heat and Mass Transfer, 51, 2494–2505 (2008)

    Article  Google Scholar 

  5. KI, T., YOSHIDA, M., YANG, Y., OGITSU, T., KIMURA, N., NAKAMOTO, T., MAKIDA, Y., and IIO, M. Measurement of thermal contact conductance between round-shaped superconducting wires and rectangular slot in copper block for application to cryogenic transfer tube. International Journal of Heat and Mass Transfer, 103, 165–172 (2016)

    Article  Google Scholar 

  6. SITKO, M. and SKOCZEŃ, B. Modelling He I—He II phase transformation in long channels containing superconductors. International Journal of Heat and Mass Transfer, 52, 9–16 (2009)

    Article  MATH  Google Scholar 

  7. CHAWLA, K. K. Composite Materials: Science and Engineering, Springer Science & Business Media, New York, 309–311 (2012)

    Book  Google Scholar 

  8. IWASA, Y. Case Studies in Superconducting Magnets: Design and Operational Issues, Springer Science & Business Media, New York, 352–355 (2009)

    Google Scholar 

  9. BARZI, E. and ZLOBIN, A. V. Research and development of Nb3Sn wires and cables for high-field accelerator magnets. IEEE Transactions on Nuclear Science, 63, 783–803 (2016)

    Article  Google Scholar 

  10. TOMSIC, M., RINDFLEISCH, M., YUE, J., MCFADDEN, K., DOLL, D., PHILLIPS, J., SUMPTION, M. D., BHATIA, M., BOHNENSTIEHL, S., and COLLINGS, E. W. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method. Physica C: Superconductivity, 456, 203–208 (2007)

    Article  Google Scholar 

  11. MIAO, H., MARKEN, K. R., MEINESZ, M., CZABAJ, B., and HONG, S. Development of round multifilament Bi-2212/Ag wires for high field magnet applications. IEEE Transactions on Applied Superconductivity, 15, 2554–2557 (2005)

    Article  Google Scholar 

  12. BONURA, M. and SENATORE, C. Thermal conductivity of industrial Nb3Sn wires fabricated by various techniques. IEEE Transactions on Applied Superconductivity, 23, 6000404 (2012)

    Article  Google Scholar 

  13. LIU, D., YONG, H., and ZHOU, Y. H. Analysis of critical current density in Bi2Sr2CaCu2O8+x round wire with filament fracture. Journal of Superconductivity and Novel Magnetism, 29, 2299–2309 (2016)

    Article  Google Scholar 

  14. JING, Z., YONG, H., and ZHOU, Y. H. Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate. Superconductor Science and Technology, 28, 075012 (2015)

    Article  Google Scholar 

  15. FU, M., XU, X., JIAO, Z., KUMAKURA, H., TOGANO, K., DING, L., WANG, F., and CHEN, J. Minimum quench energy and normal zone propagation velocity in MgB2 superconducting tape. Physica C: Superconductivity, 402, 234–238 (2004)

    Article  Google Scholar 

  16. YAMAMOTO, T., WATANABE, K., MURASE, S., NISHIJIMA, G., WATANABE, K., and KIMURA, A. Thermal stability of reinforced Nb3Sn composite superconductor under cryocooled conditions. Cryogenics, 44, 687–693 (2004)

    Article  Google Scholar 

  17. JING, Z., YONG, H., and ZHOU, Y. H. Theoretical modeling for the effect of twisting on the properties of multifilamentary Nb3Sn superconducting strand. IEEE Transactions on Applied Superconductivity, 23, 6000307 (2013)

    Article  Google Scholar 

  18. LIU, B., JING, Z., YONG, H., and ZHOU, Y. H. Strain distributions in superconducting strands with twisted filaments. Composite Structures, 174, 158–165 (2017)

    Article  Google Scholar 

  19. NIJHUIS, A., VAN MEERDERVOORT, R. P., KROOSHOOP, H. J., WESSEL, W. A., ZHOU, C., ROLANDO, G., SANABRIA, C., LEE, P., LARBALESTIER, D. C., DEVRED, A., VOSTNER, A., MITCHELL, N., TAKAHASHI, Y., NABARA, Y., BOUTBOUL, T., TRONZA, V., PARK, S. H., and YU, W. The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands. Superconductor Science and Technology, 26, 084004 (2013)

    Article  Google Scholar 

  20. BOSO, D., LEFIK, M., and SCHREFLER, B. Generalized self-consistent like method for mechanical degradation of fibrous composites. Journal of Applied Mathematics and Mechanics, 91, 967–978 (2011)

    MathSciNet  MATH  Google Scholar 

  21. WANG, X., LI, Y., and GAO, Y. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading. Cryogenics, 73, 14–24 (2016)

    Article  Google Scholar 

  22. LIU, Y., WANG, X., and GAO, Y. Three-dimensional multifilament finite element models of Bi-2212 high-temperature superconducting round wire under axial load. Composite Structures, 211, 273–286 (2019)

    Article  Google Scholar 

  23. LI, P., YE, L., JIANG, J., and SHEN, T. RRR and thermal conductivity of Ag and Ag-0.2 wt.% Mg alloy in Ag/Bi-2212 wires. IOP Conference Series: Materials Science and Engineering, IOP Publishing, Tucson, 102, 012027 (2015)

    Google Scholar 

  24. BONURA, M., AVITABILE, F., BARTH, C., JIANG, J., LARBALESTIER, D., FETE, A., LEO, A., BOTTURA, L., and SENATORE, C. Very-high thermal and electrical conductivity in overpressure-processed Bi2Sr2CaCu2O8+x wires. Materials Research Express, 5, 056001 (2018)

    Article  Google Scholar 

  25. DONG, C., ZHU, Y., LIU, S., ZHANG, X., CHENG, Z., HUANG, H., YAO, G., WANG, D., and MA, Y. Thermal conductivity of composite multi-filamentary iron-based superconducting tapes. Superconductor Science and Technology, 33(7), 075010 (2020)

    Article  Google Scholar 

  26. AMIN, A. A., SABRI, L., POOLE, C., BAIG, T., DEISSLER, R. J., RINDFLEISCH, M., DOLL, D., TOMSIC, M., AKKUS, O., and MARTENS, M. Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire. Composite Structures, 188, 313–329 (2018)

    Article  Google Scholar 

  27. JIA, S., WANG, D., and ZHENG, X. Numerical investigation on transverse heat transfer properties in cross section of full size Nb3Sn CICC ITER conductor. AIP Advances, 5, 057124 (2015)

    Article  Google Scholar 

  28. ZHOU, C., MIYOSHI, Y., VAN LANEN, E., DHALLÉ, M., and NIJHUIS, A. Direct measurement of inter-filament resistance in various multi-filamentary superconducting NbTi and Nb3Sn strands. Superconductor Science and Technology, 25, 015013 (2011)

    Article  Google Scholar 

  29. BORDINI, B., BOTTURA, L., MONDONICO, G., OBERLI, L., RICHTER, D., SEEBER, B., SENATORE, C., TAKALA, E., and VALENTINIS, D. Extensive characterization of the 1 mm PIT Nb3Sn strand for the 13-T FRESCA2 magnet. IEEE Transactions on Applied Superconductivity, 22, 6000304 (2011)

    Article  Google Scholar 

  30. SEGAL, C., TARANTINI, C., SUNG, Z. H., LEE, P. J., SAILER, B., THOENER, M., SCHLENGA, K., BALLARINO, A., BOTTURA, L., BORDINI, B., SCHEUERLEIN, C., and LARBALESTIER, D. C. Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb3Sn conductors. Superconductor Science and Technology, 29, 085003 (2016)

    Article  Google Scholar 

  31. MORTON, N., JAMES, B., WOSTENHOLM, G., and MCCARTNEY, N. The anomalous low temperature lattice thermal conductivity of Nb3Sn and Nb3Al. Journal of the Less Common Metals, 81, 321–328 (1981)

    Article  Google Scholar 

  32. BOSO, D. P., LEFIK, M., and SCHREFLER, B. A. A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics, 45, 259–271 (2005)

    Article  Google Scholar 

  33. CATTABIANI, A., BAFFARI, D., and BORDINI, B. A 3D finite element model of the reversible critical current reduction due to transverse load in Nb3Sn wires. IEEE Transactions on Applied Superconductivity, 30, 1–6 (2020)

    Article  Google Scholar 

  34. BENSOUSSAN, A., LIONS, J. L., and PAPANICOLAOU, G. Asymptotic Analysis for Periodic Structures, Elsevier, New York, 6–8 (2011)

    MATH  Google Scholar 

  35. RIJPSMA, G. and ZIJL, W. Upscaling of Hooke’s law for imperfectly layered rocks. Mathematical Geology, 30, 943–969 (1998)

    Article  Google Scholar 

  36. TIAN, W., QI, L., CHAO, X., LIANG, J., and FU, M. Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: periodic boundary condition and its numerical algorithm. International Journal of Heat and Mass Transfer, 134, 735–751 (2019)

    Article  Google Scholar 

  37. SCHEUERLEIN, C., WOLF, F., LORENTZON, M., and HOFMANN, M. Direct measurement of Nb3Sn filament loading strain and stress in accelerator magnet coil segments. Superconductor Science and Technology, 32, 045011 (2019)

    Article  Google Scholar 

  38. TIAN, W., QI, L., SU, C., and ZHOU, J. Mean-field homogenization based approach to evaluate macroscopic coefficients of thermal expansion of composite materials. International Journal of Heat and Mass Transfer, 102, 1321–1333 (2016)

    Article  Google Scholar 

  39. FENG, Y., YONG, H., and ZHOU, Y. A concurrent multiscale framework based on self-consistent clustering analysis for cylinder structure under uniaxial loading condition. Composite Structures, 266, 113827 (2021)

    Article  Google Scholar 

  40. KARAMI, G. and GARNICH, M. Micromechanical study of thermoelastic behavior of composites with periodic fiber waviness. Composites Part B: Engineering, 36, 241–248 (2005)

    Article  Google Scholar 

  41. KUKSENKO, D. and DRACH, B. Effective conductivity of materials with continuous curved fibers. International Journal of Engineering Science, 118, 70–81 (2017)

    Article  Google Scholar 

  42. KUKSENKO, D., BÖHM, H. J., and DRACH, B. Effect of micromechanical parameters of composites with wavy fibers on their effective response under large deformations. Advances in Engineering Software, 121, 206–222 (2018)

    Article  Google Scholar 

  43. MORI, T. and TANAKA, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574 (1973)

    Article  Google Scholar 

  44. XIAO, S., SUN, S. Y., XU, G. K., and FENG, X. Q. A finite-strain micromechanical model for the hyperelasticity of tendons and ligaments with crimped fibers. Mechanics of Materials, 160, 103955 (2021)

    Article  Google Scholar 

  45. CHRISTENSEN, R. M. and LO, K. H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  46. DA SILVA, H., VASYLEVSKYI, K., DRACH, B., and TSUKROV, I. Applicability of two-step homogenization to high-crimp woven composites. Composite Structures, 226, 111157 (2019)

    Article  Google Scholar 

  47. BOUAOUNE, L., BRUNET, Y., EL MOUMEN, A., KANIT, T., and MAZOUZ, H. Random versus periodic microstructures for elasticity of fibers reinforced composites. Composites Part B: Engineering, 103, 68–73 (2016)

    Article  Google Scholar 

  48. TROFIMOV, A. and SEVOSTIANOV, I. The effect of waviness of a helical inhomogeneity on its stiffness-and conductivity contribution tensors. International Journal of Engineering Science, 116, 145–154 (2017)

    Article  Google Scholar 

  49. SEIDEL, G. D. and LAGOUDAS, D. C. A micromechanics model for the thermal conductivity of nanotube-polymer nanocomposites. Journal of Applied Mechanics, 75, 041025 (2008)

    Article  Google Scholar 

  50. HASHIN, Z. Assessment of the self consistent scheme approximation: conductivity of particulate composites. Journal of Composite Materials, 2, 284–300 (1968)

    Article  Google Scholar 

  51. HASSELMAN, D. and JOHNSON, L. F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 21, 508–515 (1987)

    Article  Google Scholar 

  52. SCHEUERLEIN, C., ANDRIEUX, J., MICHELS, M., LACKNER, F., MEYER, C., CHIRIAC, R., TOCHE, F., HAGNER, M., and DIMICHIEL, M. Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires. Superconductor Science and Technology, 33, 034004 (2020)

    Article  Google Scholar 

  53. MOTOWIDLO, L. R., LEE, P. J., TARANTINI, C., BALACHANDRAN, S., GHOSH, A. K., and LAEBALESTIER, D. C. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr. Superconductor Science and Technology, 31, 014002 (2017)

    Article  Google Scholar 

  54. WU, B., SHI, Y., CHEN, J., WANG, S., ZHANG, K., GUO, Q., LIU, J., LIU, X., FENG, Y., YAN, G., LI, J., ZHANG, P., and LI, J. Effect of Nb3Sn coarse grains on critical current densities of internal tin Nb3Sn strand. IEEE Transactions on Applied Superconductivity, 30, 1–4 (2020)

    Google Scholar 

Download references

Funding

Project supported by the National Natural Science Foundation of China (Nos. 12172155 and 11872195) and the Project of Innovation Star for Outstanding Graduates Students of Gansu Provincial Department of Education of China (No. 2021CXZX-031)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yong, H. & Zhou, Y. Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand. Appl. Math. Mech.-Engl. Ed. 43, 689–708 (2022). https://doi.org/10.1007/s10483-022-2846-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2846-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation