Log in

System-size effect on the friction at liquid-solid interfaces

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The friction at the liquid-solid interfaces is widely involved in various phenomena ranging from nanometer to micrometer scales. By the molecular dynamic (MD) simulation, the friction properties of liquid-solid interfaces at the molecular level are calculated via the Green-Kubo relation. It is found that the system size will influence the value of the friction coefficient, especially for the solid surfaces with the larger polar charge. The value of the friction coefficient decreases with the increase in the system size and converges at large system sizes. The large polar charge will lead to a significant friction coefficient. However, the diffusion of water molecules on this surface is almost a constant, indicating that the diffusion coefficient seems to be independent of the system size and polar charge. This work provides insights for the selection of the system size in modeling the frictional properties of hydrophobic/hydrophilic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SINGER, I. L. and POLLOCK, H. Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer Science & Business Media, Dordrecht (1992)

    Book  Google Scholar 

  2. AMPUERO, J. P. and BEN-ZION, Y. Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 173, 674–692 (2008)

    Article  Google Scholar 

  3. BOCQUET, L. and BARRAT, J. L. Flow boundary conditions from nano- to micro-scales. Soft Matter, 3, 685–693 (2007)

    Article  Google Scholar 

  4. FALK, K., SEDLMEIER, F., JOLY, L., NETZ, R. R., and BOCQUET, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Letters, 10, 4067–4073 (2010)

    Article  Google Scholar 

  5. TU, Y., LU, H., ZHANG, Y., HUYNH, T., and ZHOU, R. Capability of charge signal conversion and transmission by water chains confined inside Y-shaped carbon nanotubes. The Journal of Chemical Physics, 138, 015104 (2013)

    Article  Google Scholar 

  6. WANG, J., CAO, W., MA, M., and ZHENG, Q. Enhanced diffusion on oscillating surfaces through synchronization. Physical Review E, 97, 022141 (2018)

    Article  Google Scholar 

  7. HOLT, J. K., PARK, H. G., WANG, Y., STADERMANN, M., ARTYUKHIN, A. B., GRIGOROPOULOS, C. P., NOY, A., and BAKAJIN, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312, 1034–1037 (2006)

    Article  Google Scholar 

  8. ZHU, Y. and GRANICK, S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Physical Review Letters, 87, 096105 (2001)

    Article  Google Scholar 

  9. MA, M., TOCCI, G., MICHAELIDES, A., and AEPPLI, G. Fast diffusion of water nanodroplets on graphene. Nature Materials, 15, 66–71 (2016)

    Article  Google Scholar 

  10. BRISCOE, W. H., TITMUSS, S., TIBERG, F., THOMAS, R. K., MCGILLIVRAY, D. J., and KLEIN, J. Boundary lubrication under water. Nature, 444, 191–194 (2006)

    Article  Google Scholar 

  11. DRELICH, J., CHIBOWSKI, E., MENG, D. D., and TERPILOWSKI, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter, 7, 9804–9828 (2011)

    Article  Google Scholar 

  12. XIU, P., TU, Y., TIAN, X., FANG, H., and ZHOU, R. Molecular wire of urea in carbon nanotube: a molecular dynamics study. Nanoscale, 4, 652–658 (2012)

    Article  Google Scholar 

  13. LUAN, B. and ZHOU, R. Wettability and friction of water on a MoS2 nanosheet. Applied Physics Letters, 108, 131601 (2016)

    Article  Google Scholar 

  14. WANG, C., ZHOU, B., TU, Y., DUAN, M., XIU, P., LI, J., and FANG, H. Critical dipole length for the wetting transition due to collective water-dipoles interactions. Scientific Reports, 2, 358 (2012)

    Article  Google Scholar 

  15. ZHANG, P., CHEN, Y. P., GUO, J. S., SHEN, Y., YANG, J. X., FANG, F., LI, C., GAO, X., and WANG, G. X. Adsorption behavior of tightly bound extracellular polymeric substances on model organic surfaces under different pH and cations with surface plasmon resonance. Water Research, 57, 31–39 (2014)

    Article  Google Scholar 

  16. HUANG, S., HOU, Q., GUO, D., YANG, H., CHEN, T., LIU, F., HU, G., ZHANG, M., ZHANG, J., and WANG, J. Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. RSC Advances, 7, 39530 (2017)

    Article  Google Scholar 

  17. MARTINS, M., FONSECA, C., BARBOSA, M., and RATNER, B. Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. Biomaterials, 24, 3697–3706 (2003)

    Article  Google Scholar 

  18. CHIEH, H. F., SU, F. C., LIAO, J. D., LIN, S. C., CHANG, C. W., and SHEN, M. R. Attachment and morphology of adipose-derived stromal cells and exposure of cell-binding domains of adsorbed proteins on various self-assembled monolayers. Soft Matter, 7, 3808–3817 (2011)

    Article  Google Scholar 

  19. HUANG, K. and SZLUFARSKA, I. Green-Kubo relation for friction at liquid-solid interfaces. Physical Review E, 89, 032119 (2014)

    Article  Google Scholar 

  20. GORB, S., GORB, E., and KASTNER, V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). Journal of Experimental Biology, 204, 1421–1431 (2001)

    Google Scholar 

  21. BOCQUET, L. and BARRAT, J. L. On the Green-Kubo relationship for the liquid-solid friction coefficient. The Journal of Chemical Physics, 139, 044704 (2013)

    Article  Google Scholar 

  22. TOCCI, G., JOLY, L., and MICHAELIDES, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Letters, 14, 6872–6877 (2014)

    Article  Google Scholar 

  23. BOCQUET, L. and BARRAT, J. L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Physical Review E, 49, 3079–3092 (1994)

    Article  Google Scholar 

  24. CAO, W., WANG, J., and MA, M. Water diffusion in wiggling graphene membranes. The Journal of Physical Chemistry Letters, 10, 7251–7258 (2019)

    Article  Google Scholar 

  25. MA, M., GREY, F., SHEN, L., URBAKH, M., WU, S., LIU, J. Z., LIU, Y., and ZHENG, Q. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nature Nanotechnology, 10, 692–695 (2015)

    Article  Google Scholar 

  26. VON HANSEN, Y., GEKLE, S., and NETZ, R. R. Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes. Physical Review Letters, 111, 118103 (2013)

    Article  Google Scholar 

  27. ERBASS, A., HORINEK, D., and NETZ, R. R. Viscous friction of hydrogen-bonded matter. Journal of the American Chemical Society, 134, 623–630 (2011)

    Article  Google Scholar 

  28. SCHULZ, J. C., SCHMIDT, L., BEST, R. B., DZUBIELLA, J., and NETZ, R. R. Peptide chain dynamics in light and heavy water: zooming in on internal friction. Journal of the American Chemical Society, 134, 6273–6279 (2012)

    Article  Google Scholar 

  29. WAN, R., LI, J., LU, H., and FANG, H. Controllable water channel gating of nanometer dimensions. Journal of the American Chemical Society, 127, 7166–7170 (2005)

    Article  Google Scholar 

  30. SECCHI, E., MARBACH, S., NIGU S, A., STEIN, D., SIRIA, A., and BOCQUET, L. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 537, 210–213 (2016)

    Article  Google Scholar 

  31. BORMUTH, V., VARGA, V., HOWARD, J., and SCH FFER, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science, 325, 870–873 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Tu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11605151, 11675138, and 11422542) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Sun, J., Wang, X. et al. System-size effect on the friction at liquid-solid interfaces. Appl. Math. Mech.-Engl. Ed. 41, 471–478 (2020). https://doi.org/10.1007/s10483-020-2591-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2591-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation