Log in

On Hardy-Littlewood-Pólya and Taikov type inequalities for multiple operators in Hilbert spaces

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We present a unified approach to obtain sharp mean-squared and multiplicative inequalities of Hardy-Littlewood-Pólya and Taikov types for multiple closed operators acting on Hilbert space. We apply our results to establish new sharp inequalities for the norms of powers of the Laplace-Beltrami operators on compact Riemannian manifolds and derive the well-known Taikov and Hardy-Littlewood-Pólya inequalities for functions defined on the d-dimensional space in the limit case. Other applications include the best approximation of unbounded operators by linear bounded ones and the best approximation of one class by elements of another class. In addition, we establish sharp Solyar type inequalities for unbounded closed operators with closed range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Arestov, Approximation of unbounded operators by bounded ones, and related extremal problems, Russian Math. Surveys, 51 (1996), 1093–1126.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. V. Arestov and V. N. Gabushin, Best approximation of unbounded operators by bounded operators, Russian Math. Iz. VUZ, 39 (1995), 38–63.

    MathSciNet  MATH  Google Scholar 

  3. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag (1998).

  4. V. Babenko, Yu. Babenko and N. Kriachko, Inequalities of Hardy-Littlewood-Pólya type for functions of operators and their applications, J. Math. Anal. Appl., 444 (2016), 512–526.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. F. Babenko and R. O. Bilichenko, Taikov type inequalities for self-adjoint operators in Hilbert space, Trudy IPMM NAN Ukraine, 21 (2010), 1–7.

    MATH  Google Scholar 

  6. V. F. Babenko and R. O. Bilichenko, Taikov type inequalities for powers of normal operators in Hilbert spaces, Visnyk DNU, Ser. Matem., 16 (2011), 3–7.

    Google Scholar 

  7. V. F. Babenko and R. O. Bilichenko, Approximation of unbounded functionals by bounded ones in Hilbert space, Visnyk DNU, Ser. Matem., 17 (2012), 3–10.

    Google Scholar 

  8. V. F. Babenko, V. A. Kofanov and S. A. Pichugov, Multivariate inequalities of Kolmogorov type and their applications, in: Multivariate Approximation and Splines (Mannheim, 1996), Internat. Ser. Numer. Math., 125, Birkhäuser (Basel, 1997), pp. 1–12.

    MATH  Google Scholar 

  9. V. F. Babenko, V. A. Kofanov and S. A. Pichugov, Inequalities of Kolmogorov type and some their applications in approximation theory, Rend. Circ. Mat. Palermo (2), 52 (1998), 223–237.

    MathSciNet  MATH  Google Scholar 

  10. V. F. Babenko, V. A. Kofanov and S. A. Pichugov, On inequalities of Landau-Hadamard-Kolmogorov type for L2-norm of intermediate derivatives, East J. Approx., 2 (1996), 343–368.

    MathSciNet  MATH  Google Scholar 

  11. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov and S. A. Pichugov, Inequalities for Derivatives and their Applications, Naukova Dumka, (Kyiv, 2003).

    Google Scholar 

  12. V. F. Babenko, O. V. Kozynenko and D. S. Skorokhodov, On Carlson type inequalities for spaces L2,r;α,β((−1, 1)) and \({L_{2,{e^{- {t^2}}}}}\) (ℝ), Researches in Math., 27 (2019), 45–58.

    Article  Google Scholar 

  13. V. F. Babenko and N. A. Kriachko, On Hardy-Littlewood-Pϳlya type inequalities for operators in Hilbert space, Visnyk DNU, Ser. Matem., 19 (2014), 1–5.

    Google Scholar 

  14. V. F. Babenko, A. A. Ligun and A. A. Shumeiko, On the sharp inequalities of Kolmogorov type for operators in Hilbert spaces, Visnyk DNU, Ser. Matem., 11 (2006), 9–13.

    Google Scholar 

  15. V. F. Babenko and T. M. Rassias, On exact inequalities of Hardy-Littlewood-Pólya type, J. Math. Anal. Appl., 245 (2000), 570–593.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Babenko and O. Samaan, On inequalities of Kolmogorov type for operators acting into Hilbert space and some applications, Visnyk DNU, Ser. Matem., 8 (2003), 11–18.

    Google Scholar 

  17. I.V. Berdnikova and S. Z. Rafal’son, Some inequalities between norms of a function and its derivatives in integral metrics, Soviet Math. (Iz. VUZ), 29 (1985), 1–5.

    MATH  Google Scholar 

  18. A. L. Besse, Manifolds all of whose Geodesics are Closed, Modern Surveys in Mathematics, Springer-Verlag (Berlin, Heidelberg, New York, 1978).

    Book  MATH  Google Scholar 

  19. A. P. Buslaev, V. M. Tikhomirov, Inequalities for derivatives in the multidimensional case, Math. Notes, 25 (1979), 32–40.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, Springer (Berlin, Heidelberg, 2012).

    Book  MATH  Google Scholar 

  21. N. Dunford and J. T. Schwartz, Linear Operators. Part II: Spectral Theory, Interscience (New York, 1963).

    MATH  Google Scholar 

  22. V. N. Gabushin, On the best approximation of the differentiation operator on the halfline, Math. Notes, 6 (1969), 804–810.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Hadamard, Sur le modulé maximum d’une fonction et de ses dérivées, Soc. Math. de France, Comptes Rendus des Séances, 1914.

  24. G. H. Hardy and J. E. Littlewood, Contribution to the arithmetic theory of series, Proc. London Math. Soc., s2–11 (1912), 411–478.

    MathSciNet  MATH  Google Scholar 

  25. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, University Press (Cambridge, 1934).

    MATH  Google Scholar 

  26. L. Hörmander, On the theory of general partial differential operators, Acta Math., 94 (1955), 161–248.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Häormander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193–218.

    Article  MathSciNet  Google Scholar 

  28. A. A. Ilyin, Best constants in a class of polymultiplicative inequalities for derivatives, Sb. Math., 189 (1998), 1335–1359.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. A. Ilyin, Lieb-Thirring integral inequalities and their applications to attractors of the Navier-Stokes equations, Sbornik: Math., 196 (2005), 29–61.

    Article  MathSciNet  Google Scholar 

  30. A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations, J. Nonlinear Sci., 16 (2006), 233–253.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. A. Kalyabin, Sharp constants in inequalities for intermediate derivatives (the Gabushin case), Funct. Anal. Appl., 38 (2004), 184–191.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Kolmogoroff, Une generalisation de l’inegalite de M. J. Hadamard entre les bornes superieures des dérivées successives d’une fonction, C. R. Acad. Sci., 207 (1938), 764–765.

    MATH  Google Scholar 

  33. A. N. Kolmogorov, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on the infinite interval, Uchenye Zapiski Moskov. Gos. Univ. Matematika, 30 (1939), 3–16 (in Russian).

    MathSciNet  Google Scholar 

  34. N. P. Kuptsov, Kolmogorov estimates for derivatives in L2[0, ∞;), Proc. Steklov Inst. Math., 138 (1977), 101–125.

    Google Scholar 

  35. A. K. Kushpel, On the Lebesgue constants, Ukr. Math. J., 71 (2019), 1224–1233.

    Article  MathSciNet  Google Scholar 

  36. M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Lecture Notes in Math., Springer (Berlin, Heidelberg, 1992).

    Book  MATH  Google Scholar 

  37. E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc., 13 (1913), 43–49.

    MATH  Google Scholar 

  38. A. A. Lunev, Exact constants in the inequalities for intermediate derivatives in n-dimensional space, Math. Notes, 85 (2009), 458–462.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. A. Lunev and L. L. Oridoroga, Exact constants in generalized inequalities for intermediate derivatives, Math. Notes, 85 (2009), 703–711.

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu. I. Lyubich, On inequalities between powers of a linear operator, Izv. Akad. Nauk SSSR Ser. Mat., 24 (1960), 825–864 (in Russian).

    MathSciNet  Google Scholar 

  41. G. G. Magaril-Il’yaev and V. M. Tihomirov, On the Kolmogorov inequality for fractional derivatives on the half-line, Anal. Math., 7 (1981), 37–47.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. S. Mitrinovic, J. Pecaric and A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Mathematics and its Applications, 53, Springer Netherlands (1991).

    Book  MATH  Google Scholar 

  43. S. Z. Rafal’son, An inequality between the norms of a function and its derivatives in integral metrics, Math. Notes, 33 (1983), 38–41.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, CRC Press (1993).

  45. A. Yu. Shadrin, Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes W 2m , Math. Notes, 48 (1990), 1058–1063.

    Article  MathSciNet  MATH  Google Scholar 

  46. G. E. Shilov, On inequalities between derivatives, Sb. Rab. Stud. Nauchn. Kruzkov. Moskov. Gos. Univ., 1937, 17–27.

  47. V. G. Solyar, An inequality for the norms of a function and of its derivatives, Soviet Math. (Iz. VUZ), (1976), 20 (1976), 58–62.

    Google Scholar 

  48. S. B. Stechkin, Best approximation of linear operators, Math. Notes, 1 (1967), 91–99.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. V. Taikov, Kolmogorov-type inequalities and the best formulas for numerical differentiation, Math. Notes, 4 (1968), 631–634.

    Article  MATH  Google Scholar 

  50. H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat., 24 (1985), 299–337.

    Article  MathSciNet  MATH  Google Scholar 

  51. K. Yosida, Functional Analysis, Springer-Verlag (Berlin, Heidelberg, 1995).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Skorokhodov.

Additional information

This work was supported by Simons Collaboration Grant No. 210363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, V., Babenko, Y., Kriachko, N. et al. On Hardy-Littlewood-Pólya and Taikov type inequalities for multiple operators in Hilbert spaces. Anal Math 47, 709–745 (2021). https://doi.org/10.1007/s10476-021-0104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-021-0104-8

Key words and phrases

Mathematics Subject Classification

Navigation