Log in

On The Generalized Ramanujan–Nagell Equation \(x^2+(2c-1)^m=c^n\)

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We show that if c is a positive integer satisfying \(2c-1=3p^l\ \hbox{or}\ 2c-1=5p^l\) with p prime and l positive integer, then the equation \({x^2 + (2c-1)^m}=c^n\) has only the positive integer solution \((x,m,n)=(c-1,1,2)\) without any congruence condition on a prime p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Math., University of Sydney, http://magma.maths.usyd.edu.au/magma/.

  2. Bennett, M.A., Skinner, C.: Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56, 23–54, 2004

    Article  MathSciNet  Google Scholar 

  3. Cao, Z., Dong, X.: On Terai's conjecture. Proc. Japan Acad. 74A, 127–129, 1998

    Article  MathSciNet  Google Scholar 

  4. Cao, Z., Dong, X., Li, Z.: A new conjecture concerning the Diophantine equation \(x^2 + b^y = c^z\). Proc. Japan Acad. 78, 199–202, 2002

    Article  Google Scholar 

  5. Deng, M.: A note on the Diophantine equation \(x^2 +q^m=c^{2n}\). Proc. Japan Acad. 91, 15–18, 2015

    Article  Google Scholar 

  6. Deng, M., Guo, J., Xu, A.: A note on the Diophantine equation \(x^2+(2c-1)^m=c^n\). Bull. Aust. Math. Soc. 98, 188–195, 2018

    Article  MathSciNet  Google Scholar 

  7. Ellenberg, J.S.: Galois representations attached to \(\mathbb{Q}\)-curves and the generalized Fermat equation \(A^4+B^2=C^p\). Amer. J. Math. 126, 763–787, 2004

    Article  MathSciNet  Google Scholar 

  8. Hu, J., Li, X.: On the generalized Ramanujan-Nagell equation \(x^2+q^m=c^n\) with \(q^r+1=2c^2\). Bull. Math. Soc. Sci. Math. Roumanie 60, 257–265, 2017

    MathSciNet  MATH  Google Scholar 

  9. Le, M.: A Note on the diophantine equation \(x^2 +b^y = c^z\). Acta Arith. 71, 253–257, 1995

    Article  MathSciNet  Google Scholar 

  10. Le, M.: On Terai's conjecture concerning Pythagorean numbers. Acta Arith. 100, 41–45, 2001

    Article  MathSciNet  Google Scholar 

  11. Le, M.: A Note on the Diophantine equation \(x^2 + b^y = c^z\). Czechoslovak Math. J. 56, 1109–1116, 2006

    Article  MathSciNet  Google Scholar 

  12. W. Ljunggren, Some theorems on indeterminate equations of the form \(\frac{x^n-1}{x-1} = y^q\), Norsk Mat. Tidsskr., 25 (1943), 17–20 (Norvegian).

  13. S. Ramanujan, Question 446, J. Indian Math. Soc., 5 (1913), 120; in: Collected Papers, Cambridge University Press (1927), p. 327.

  14. Nagell, T.: The Diophantine equation \(x^2 + 7 = 2^n\). Ark. Math. 4, 185–187, 1960

    Article  Google Scholar 

  15. K. Tanahashi, On the Diophantine equations \(x^2+7^m=2^n\) and \(x^2+11^m=3^n\), J. Predent Fac., Gifu Coll. Dent., 3 (1977), 77–79.

  16. Terai, N.: The Diophantine equation \(x^2 + q^m = p^n\). Acta Arith. 63, 351–358, 1993

    Article  MathSciNet  Google Scholar 

  17. Terai, N.: A note on the Diophantine equation \(x^2+q^m=c^n\). Bull. Aust. Math. Soc. 90, 20–27, 2014

    Article  MathSciNet  Google Scholar 

  18. Toyoizumi, M.: On the Diophantine equation \(y^2+D^m=2^n\). Comment. Math. Univ. St. Pauli 27, 105–111, 1979

    MATH  Google Scholar 

  19. Yuan, P., Hu, Y.: On the Diophantine equation \(x^2 +D^m=p^n\). J. Number Theory 111, 144–153, 2005

    Article  MathSciNet  Google Scholar 

  20. Yuan, P., Wang, J.B.: On the Diophantine equation \(x^2 + b^y = c^z\). Acta Arith. 84, 145–147, 1998

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the referee for the careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fujita.

Additional information

The first author is supported by JSPS KAKENHI Grant Number 16K05079, and the second author is supported by JSPS KAKENHI Grant Number 18K03247.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, Y., Terai, N. On The Generalized Ramanujan–Nagell Equation \(x^2+(2c-1)^m=c^n\). Acta Math. Hungar. 162, 518–526 (2020). https://doi.org/10.1007/s10474-020-01085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01085-8

Key words and phrases

Mathematics Subject Classification

Navigation