Log in

Multiple intersections of space-time anisotropic Gaussian fields

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Let X = {X(t) ∈ ℝd, t ∈ℝN} be a centered space-time anisotropic Gaussian field with indices H = (H1, ⋯, HN) ∈ (0, 1)N, where the components Xi (i = 1, ⋯, d) of X are independent, and the canonical metric \(\sqrt {{{\mathbb{E}({X_i}(t) - {X_i}(s))}^2}} \,(i = 1, \cdots ,d)\) is commensurate with \({\gamma ^{{\alpha _i}}}(\sum\limits_{j = 1}^N {|{t_j} - {s_j}{|^{{H_j}}})} \) for s = (s1, ⋯, sN), t = (t1, ⋯, tN) ∈ ℝN, αi ∈ (0, 1], and with the continuous function γ(·) satisfying certain conditions. First, the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity, which are based on the kernel functions depending explicitly on γ (·). Furthermore, the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered. Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khoshnevisan D. Intersections of Brownian motions. Expos Math, 2003, 21: 97–114

    Article  MathSciNet  MATH  Google Scholar 

  2. Taylor S J. The measure theory of random fractals. Math Proc Camb Philos Soc, 1986, 100: 383–406

    Article  MathSciNet  MATH  Google Scholar 

  3. Rosen J. The intersection local time of fractional Brownian motion in the plane. J Multivariate Anal, 1987, 23: 37–46

    Article  MathSciNet  MATH  Google Scholar 

  4. **ao Y. Random fractals and Markov processes//Lapidus M L, van Frankenhuijsen M. Fractal Geometry and Application: A Jubilee of Benoit Mandelbrot. Providence: American Mathematical Society, 2004: 261–338

    Chapter  Google Scholar 

  5. Li Y, **ao Y. Multivariate operator-self-similar random fields. Stoch Process Appl, 2011, 121: 1178–1200

    Article  MathSciNet  MATH  Google Scholar 

  6. Luan N, **ao Y. Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields. J Fourier Anal Appl, 2012, 18: 118–145

    Article  MathSciNet  MATH  Google Scholar 

  7. Mason D J, **ao Y. Sample path properties of operator self-similar Gaussian random fields. Theor Probab Appl, 2002, 46: 58–78

    Article  MathSciNet  MATH  Google Scholar 

  8. Ni W. Studies on Sample Properties of Anistropic Random Fields [D]. Hangzhou: Zhejiang Gongshang University, 2018

    Google Scholar 

  9. **ao Y. Sample path properties of anisotropic Gaussian random fields// Khoshnevisan D, Rassoul-Agha F. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1962. New York: Springer, 2009: 145–212

    Chapter  Google Scholar 

  10. **ao Y. Recenct developments on fractal properties of Gaussian random fields//Barral J, Seuret S. Further Developments in Fractals and Related Fields. New York: Springer, 2013: 255–288

    Chapter  Google Scholar 

  11. Nualart E, Viens F. Hitting probabilities for general Gaussian processes. ar**v:1305.1758

  12. Ni W, Chen Z. Hitting probabilities of a class of Gaussian random fields. Statist Probab Lett, 2016, 118: 145–155

    Article  MathSciNet  MATH  Google Scholar 

  13. Biermé H, Lacaux C, **ao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull London Math Soc, 2009, 41: 253–273

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen Z, **ao Y. On intersections of independent anisotropic Gaussian random fields. Sci China Math, 2012, 55: 2217–2232

    Article  MathSciNet  MATH  Google Scholar 

  15. Ni W, Chen Z. Hitting probabilities and dimension results for space-time anisotropic Gaussian fields (in Chinese). Sci Sin Math, 2018, 48: 419–442

    MATH  Google Scholar 

  16. Chen Z, **ao Y. Local times and Hausdorff dimensions of inverse images of Gaussian vector fields with space-anisotropy (in Chinese). Sci Sin Math, 2019, 49: 1487–1500

    MATH  Google Scholar 

  17. Dvoretzky A, Erdös P, Kakutani S. Double points of paths of Brownian motion in n-space. Acta Sci Math, 1950, 12: 75–81

    MathSciNet  MATH  Google Scholar 

  18. Kahane J P. Points multiples des processus de Lévy symétriques stables restreints à un ensemble de valurs du temps. Sém Anal Harm, Orsay, 1983, 38: 74–105

    MATH  Google Scholar 

  19. Kahane J P. Some Random Series of Functions. Cambridge: Cambridge University Press, 1985

    MATH  Google Scholar 

  20. Khoshnevisan D, **ao Y. Lévy processes: capacity and Hausdorff dimension. Ann Probab, 2005, 33: 841–878

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans S N. Potential theory for a family of several Markov processes. Ann Inst Henri Poincare Probab Stat, 1987, 23: 499–530

    MathSciNet  MATH  Google Scholar 

  22. Tongring N. Which sets contain multiple points of Brownian motion? Math Proc Cambridge Philos Soc, 1988, 103: 181–187

    Article  MathSciNet  MATH  Google Scholar 

  23. Fitzsimmons P J, Salisbury T S. Capacity and energy for multiparameter processes. Ann Inst Henri Poincare Probab Stat, 1989, 25: 325–350

    MathSciNet  MATH  Google Scholar 

  24. Peres Y. Probability on trees: an introductory climb//Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math 1717. Berlin: Springer, 1999: 193–280

    Chapter  Google Scholar 

  25. Dalang R C, Khoshnevisan D, Nualart E, et al. Critical Brownian sheet does not have double points. Ann Probab, 2012, 40: 1829–1859

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen Z. Multiple intersections of independent random fields and Hausdorff dimension (in Chinese). Sci China Math, 2016, 46: 1279–1304

    MATH  Google Scholar 

  27. Chen Z, Wang J, Wu D. On intersections of independent space-time anisotropic Gaussian fields. Statist Probab Lett, 2020, 166: 108874

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang J, Chen Z. Hitting probabilities and intersections of time-space anisotropic random fields. Acta Math Sci, 2022 42B(2): 653–670

    Article  MathSciNet  MATH  Google Scholar 

  29. Falconer K J. Fractal Geometry-Mathematical Foundations and Applications. Chichester: John Wiley and Sons Ltd, 1990

    Book  MATH  Google Scholar 

  30. Khoshnevisan D. Multiparameter Processes: An Introduction to Random Fields. New York: SpringerVerlag, 2002

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Yuan.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This research was supported by the National Natural Science Foundation of China (12371150, 11971432), the Natural Science Foundation of Zhejiang Province (LY21G010003), the Management Project of “Digital+” Discipline Construction of Zhejiang Gongshang University (SZJ2022A012, SZJ2022B017), the Characteristic & Preponderant Discipline of Key Construction Universities in Zhejiang Province (Zhejiang Gongshang University-Statistics) and the Scientific Research Projects of Universities in Anhui Province (2022AH050955).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yuan, W. Multiple intersections of space-time anisotropic Gaussian fields. Acta Math Sci 44, 275–294 (2024). https://doi.org/10.1007/s10473-024-0115-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0115-1

Key words

2020 MR Subject Classification

Navigation