Log in

Offset and gain calibration circuit for MIM-ISFET devices

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A programmable calibration circuit for sensors is proposed in this paper. It carries out gain and offset compensation by adding or subtracting appropriate correction factors to the transfer function of each sensor. Digital programmability makes it possible to automate calibration, paving the way for batch calibration. The circuit was designed for a specific sensor structure, a MIM-ISFET, which was modeled in HSpice. The proposed scheme reduces the offset and gain error due to process variations of both the sensor and the readout circuit. Offset error is reduced from 123 to 20 mV and gain error is reduced from 10.6 to 6.4 mV/pH. Relative error is reduced in the whole sensing range from 13 to 4 %. The circuit was designed in a 0.18 μm standard CMOS process, occupies an area of 115 × 100 μm2 and consumes 2.3 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, BME-17(1), 70–71.

    Article  Google Scholar 

  2. Bergveld, P. (2000). Bedside clinical chemistry: From catheter tip sensor chips towards micro total analysis systems. Biomedical Microdevices, 2(3), 185–195.

    Article  Google Scholar 

  3. der Schoot, B. V., Jeanneret, S., der Berg, A. V., & Rooij, N. D. (1993). Modular setup for a miniaturized chemical-analysis system. Sensors and Actuators B, 5(1–3), 211–213.

    Article  Google Scholar 

  4. Jimenez-Jorquera, C., Orozco, J., & Baldi, A. (2010). ISFET based microsensors for environmental monitoring. Sensors, 10, 61–83.

    Article  Google Scholar 

  5. Van der Horn, G., & Huijsing, J. L. (1997). Integrated smart sensor calibration. Analog Integrated Circuits and Signal Processing, 14(3), 207–222.

    Article  Google Scholar 

  6. Medrano-Marques, N. J., Zatorre-Navarro, G., & Celma-Pueyo, S. (2008). A tunable analog conditioning circuit applied to magnetoresistive sensors. IEEE Transactions on Industrial Electronics, 55(2), 966–969.

    Article  Google Scholar 

  7. Zatorre, G., Medrano, N., Sanz, M. T., Calvo, B., Martinez, P. A., & Celma, S. (2010). Designing adaptive conditioning electronics for smart sensing. IEEE Sensors Journal, 10(4), 831–838.

    Article  Google Scholar 

  8. Pastre, M., & Kayal, M. (2006). A digital calibration method and its application to a Hall sensor microsystem. Journal of Control Engineering and Applied Informatics (CEAI), 8(3), 23–31.

    Google Scholar 

  9. Bergveld, P. (2003). ISFET, theory and practice. IEEE Sensors Conference, pp. 1–26.

  10. Molina, J., Torres, A., Espinosa, G., Sanz, M. T., Guerrero, E., Perez, B., et al. (2012). Integration of MOSFET/MIM structures using a CMOS-based technology for pH detection applications with high-sensitivity. Procedia Chemistry, 6, 110–116.

    Article  Google Scholar 

  11. Martinoia, S., & Massobrio, G. (2000). A behavioral macromodel of the ISFET in SPICE. Sensors and Actuators B, 62(3), 182–189.

    Article  Google Scholar 

  12. Morgenshtein, A., Sudakov-Boreysha, L., Dinnar, U., Jakobson, C. G., & Nemirovsky, Y. (2004). CMOS readout circuit for ISFET microsystems. Sensors and Actuators B, 97(1), 122–131.

    Article  Google Scholar 

  13. Azcona, C., Calvo, B., Medrano, N., Bayo, A., Celma, S., & Aznar, F. (2011). 12-b enhanced input range on-chip quasi-digital converter with temperature compensation. IEEE Transactions on Circuits and Systems II, 58(3), 164–168.

    Article  Google Scholar 

  14. Hammerschmied, C. M., & Huang, Q. (1998). Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with −79 dB THD. IEEE Journal of Solid-State Circuits, 33(8), 1148–1157.

    Article  Google Scholar 

  15. Pastre, M., & Kayal, M. (2006). Methodology for the digital calibration of analog circuits and systems, with case studies. The Netherlands: Springer.

    Google Scholar 

  16. Kier, R. J., Harrison, R. R., & Beer, R. D. (2004). An MDAC synapse for analog neural networks. In Proceedings of the 2004 IEEE Symposium on Circuits and Systems (ISCAS’04), pp. 752–755.

  17. Baschirotto, A., Capone, S., D’Amico, A., Di Natale, C., Ferragina, V., Ferri, G., et al. (2008). A portable integrated wide-range gas sensing system with smart A/D front-end. Sensors and Actuators B, 130(1), 164–174.

    Article  Google Scholar 

  18. Bult, K., & Geelen, G. J. G. M. (1992). An inherently linear and compact MOST-only current division technique. IEEE Journal of Solid-State Circuits, 27(12), 1730–1735.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT 217623 and 322005 Doctoral Grants and by CONACYT CB-SEP-2008-01-99901 Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Sanz-Pascual.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, E., Carrillo-Martínez, L.A., Sanz-Pascual, M.T. et al. Offset and gain calibration circuit for MIM-ISFET devices. Analog Integr Circ Sig Process 76, 321–333 (2013). https://doi.org/10.1007/s10470-013-0077-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0077-z

Keywords

Navigation