Log in

Effect of tree form on wheat yield via changing microenvironment in almond–wheat intercrop**

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry systems are widely used all over the world, especially in southern ** position. Compared with monoculture wheat, the yields of intercropped wheat with DC, SC, OC, and HS were decreased by 63.7%, 18.2%, 35.4%, and 33.0%, respectively. Tree form is largely influential to PAR, red light/far-red light, temperature, and humidity in the intercropped areas. The PAR in the intercropped wheat area was SC > HS/OC > DC, and PAR was increased with the distance from the tree line. PAR correlated significantly with R/FR, mean daily temperature, and relative humidity. PAR measured for wheat at various growth and development stages had significant positive correlations with thousand kernel weight, number of spikes, kernel number per spike, and grain yield. The structural equation model revealed that the yields of wheat were affected primarily by the PAR at the flowering and filling stages, with a contribution of up to 68%. Choosing a proper tree form (i.e., SC) and pruning to increase the trunk height or to remove the center pole is important to increase the quantity of light penetration and thereby increase the potential of wheat grain yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbate PE, Andrade FH, Culot JP, Bindraban PS (1997) Grain yield in wheat: effects of radiation during spike growth period. Field Crop Res 54:245–257. https://doi.org/10.1016/S0378-4290(97)00059-2

    Article  Google Scholar 

  • Afifi M, Swanton C (2011) Maize seed and stem roots differ in response to neighbouring weeds. Weed Res 51:442–450. https://doi.org/10.1111/j.1365-3180.2011.00865.x

    Article  Google Scholar 

  • Artru S, Garré S, Dupraz C, Hiel MP, Blitz-Frayret C, Lassois L (2017) Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. Eur J Agron 82:60–70

    Article  Google Scholar 

  • Barritt BH, Rom CR, Konishi BJ, Dilley MAJH (1991) Light level influences spur quality and canopy development and light interception influence fruit production in apple. HortScience 26:993–999. https://doi.org/10.21273/HORTSCI.26.8.993

    Article  Google Scholar 

  • Calfapietra C, Gielen B, Karnosky D, Ceulemans R, Scarascia Mugnozza G (2010) Response and potential of agroforestry crops under global change. Environ Pollut 158(4):1095–1104

    Article  CAS  Google Scholar 

  • Chao H, Zhang D, Xu L, Liao K (2007) Study on microclimatic horizontal distribution law of apricot–cotton intercrop** system. J **%20system&journal=J%20**njiang%20Agric%20Univ&volume=30&pages=35-39&publication_year=2007&author=Chao%2CH&author=Zhang%2CD&author=Xu%2CL&author=Liao%2CK"> Google Scholar 

  • Chirko CP, Gold MA, Nguyen PV, Jiang JP (1996) Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density ( Q p ) in a paulownia and wheat intercrop** system. For Ecol Manage 83:171–180. https://doi.org/10.1016/0378-1127(96)03721-8

    Article  Google Scholar 

  • Demotes-Mainard JS, Hélène M (2004) Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crop Res 87:221–233. https://doi.org/10.1016/j.fcr.2003.11.014

    Article  Google Scholar 

  • Dilla AM, Smethurst PJ, Barry K, Parsons D, Denboba MA (2018) Tree pruning, zone and fertiliser interactions determine maize productivity in the Faidherbia albida (Delile) A. Chev parkland agroforestry system of Ethiopia. Agrofor Syst. https://doi.org/10.1007/s10457-018-0304-9

    Article  Google Scholar 

  • Dupraz C, Blitz-Frayret C, Lecomte I, Molto Q, Reyes F, Gosme M (2018) Influence of latitude on the light availability for intercrops in an agroforestry alley-crop** system. Agrofor Syst 92:1019–1033. https://doi.org/10.1007/s10457-018-0214-x

    Article  Google Scholar 

  • Dupraz C (2013) Adaptation of plurispecific systems to climate change. In: Pijnappels M, Dietl P (eds) Climate change adaptation inspiration book. Circle2 ERA-NET, Wageningen, pp 134–139

  • Gao Z, Zhao C, Chen J, Zhan X (2012) Tree structure and 3-D distribution of radiation in canopy of apple trees with different canopy structures in China. Chin J Eco Agric 20:63–68. https://doi.org/10.3724/SP.J.1011.2012.00063

    Article  Google Scholar 

  • Gao L, Xu H, Bi H, ** competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS ONE 8(7):e70739. https://doi.org/10.1371/journal.pone.0070739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosme M, Dufour L, Inurreta-Aguirre HD, Dupraz C (2016) Microclimatic effect of agroforestry on diurnal temperature cycle. In: European agroforestry conference EURAF—celebrating 20 years of innovations in European Agroforestry, pp. 183–186

  • Hill SJ, Stephenson DW, Taylor BK (1987) Almond yield in relation to tree size. Sci Hortic 33:97–111. https://doi.org/10.1016/0304-4238(87)90036-7

    Article  Google Scholar 

  • Huang AJ, Qiao X, Chen XW, Lei JJ, Zhao Q, Zhang HZ, Wang M, Zhang JS, Sai LS, Xue LH (2013) A study on microclimate factors in fruit tree–wheat intercrop** system. J China Agric Univ 18:88–95

    Google Scholar 

  • Inurreta-Aguirre HD, Lauri PÉ, Dupraz C, Gosme M (2018) Yield components and phenology of durum wheat in a Mediterranean alley-crop** system. Agrofor Syst. https://doi.org/10.1007/s10457-018-0201-2

    Article  Google Scholar 

  • **g Z, Donald LS, Guo LW, Fu CX, Yu YW (2011) Effects of shade and drought stress on soybean hormones and yield of main-stem and branch. Afr J Biotech 10:14392–14398. https://doi.org/10.5897/AJB11.2143

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Biehle DJ (2000) Defining competition vectors in a temperate alley crop** system in the Midwestern USA. Compet Water Agrofor Syst 48:41–59. https://doi.org/10.1023/A:1006289322392

    Article  Google Scholar 

  • Kline R, Kline RB, Kline R (2011) Principles and practice of structural equation modeling. J Am Stat Assoc 2011(101):12

    Google Scholar 

  • Li W, Lai S (1994) Agroforestry in China. Chinese Science Press, Bei**g, pp 14–18

    Google Scholar 

  • Li L, Cui X, Li X, Mi Z, Yang H (1998) Study on light energy distribution law in fruit–crop planting ecosystem. J Inner Mongolia Inst Agric Anmal Husbandry 19:54–58

    CAS  Google Scholar 

  • Li F, Li F, Li B, Wen R (2000a) A study of the spectral variations of solar radiation inside and outside the inter-crop system of paulownia trees and wheat crop. Acta Ecol Sin 20:110–118

    CAS  Google Scholar 

  • Li S, Kurata K, Takakura T (2000b) Direct solar radiation penetration into row crop canopies in a lean-to greenhouse. Agric Meteorol. https://doi.org/10.1016/s0168-1923(99)00044-1

    Article  Google Scholar 

  • Li W, Yan S, Shi X, Zhang C (2011) Effects of shading stress at different grain filling stages on yield and grain filling of winter wheat. J Anhui Sci Technol Univ 25:13–17

    Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Ozturk A, Caglar O, Bulut S (2006) Growth and yield response of facultative wheat to winter sowing, freezing sowing and spring sowing at different seeding rates. J Agron Crop Sci. https://doi.org/10.1111/j.1439-037X.2006.00187.x

    Article  Google Scholar 

  • Page ER, Tollenaar M, Lee EA, Lukens L, Swanton CJ (2010) Shade avoidance: an integral component of crop–weed competition. Weed Res 50:281–288. https://doi.org/10.1111/j.1365-3180.2010.00781.x

    Article  Google Scholar 

  • Palmer JW (1989) The effects of row orientation, tree height, time of year and latitude on light interception and distribution in model apple hedgerow canopies. J Hortic Sci 64:137–145

    Article  Google Scholar 

  • Pearcy RW, Krall JP, Sassenrath-Cole GF (1996) Photosynthesis in fluctuating light environments. Adv Photosynth Respir. https://doi.org/10.1007/0-306-48135-9_13

    Article  Google Scholar 

  • Peng X, Thevathasan NV, Gordon AM, Idris M, Gao P, Coles JA (2015) Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercrop** systems in Southern Ontario, Canada. PLoS ONE. https://doi.org/10.1371/journal.pone.0129467

    Article  PubMed  Google Scholar 

  • Qiao X, Lei J, Chen X, Zhao Q, Zhang H, Huang T, Li G (2012) Effect of microclimate in walnut–wheat intercrop** system on wheat yield. Chin J Agrometeorol 33:540–544

    Google Scholar 

  • Qiao X, Sai L, Chen XW, Xue LH, Lei JJ (2019) Impact of fruit-tree shade intensity on the growth, yield, and quality of intercropped wheat. PLoS ONE. https://doi.org/10.1371/journal.pone.0203238

    Article  PubMed  PubMed Central  Google Scholar 

  • Renata R et al. (2015) Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? J Exp Bot 66:2437–2447. https://doi.org/10.1093/jxb/erv055

    Article  CAS  Google Scholar 

  • Román A, Alzueta I, Savin R et al. (2013) Understanding grain yield responses to source-sink ratios during grain filling in wheat and barley under contrasting environments. Field Crop Res 150:42–51

    Article  Google Scholar 

  • Shi YJ, Taxi Z, Song FH, Yu T, Wu ZB, Yishake H (2010) Study on horizontal distribution character of field microclimate in jujube–crops intercrop** system. **%20system&journal=**njiang%20Agric%20Sci&volume=47&pages=888-892&publication_year=2010&author=Shi%2CYJ&author=Taxi%2CZ&author=Song%2CFH&author=Yu%2CT&author=Wu%2CZB&author=Yishake%2CH"> Google Scholar 

  • Smethurst PJ, Huth NI, Masikati P, Sileshi GW, Akinnifesi FK, Wilson J, Sinclair F (2017) Accurate crop yield predictions from modelling tree–crop interactions in gliricidia–maize agroforestry. Agrofor Syst 155:70–77

    Article  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591. https://doi.org/10.1038/35036500

    Article  CAS  PubMed  Google Scholar 

  • Sparkes DL, Holme SJ, Gaju O (2006) Does light quality initiate tiller death in wheat? Eur J Agron 24:212–217. https://doi.org/10.1016/j.eja.2005.08.003

    Article  Google Scholar 

  • Spiertz JHJ (1977) The influence of temperature and light intensity on grain growth in relation to the carbohydrate and nitrogen economy of the wheat plant. Neth J Agric Sci 25(6):182–197

    CAS  Google Scholar 

  • Surki AA, Nazari M, Fallah S, Iranipour R, Mousavi A (2020) The competitive effect of almond trees on light and nutrients absorption, crop growth rate, and the yield in almond-cereal agroforestry systems in semi-arid regions. Agrofor Syst. https://doi.org/10.1007/s10457-019-00469-2

    Article  Google Scholar 

  • Talbot G, Dupraz C (2012) Simple models for light competition within agroforestry discontinuous tree stands: are leaf clumpiness and light interception by woody parts relevant factors? Agrofor Syst 84(1):101–116

    Article  Google Scholar 

  • Wang YP, Jarvis PG (1990) Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). Tree Physiol. https://doi.org/10.1093/treephys/7.1-2-3-4.297

    Article  PubMed  Google Scholar 

  • Wei QP, Li JR, Shu HR (1998) Relationships between fruit quality and ecological factors in apple. J Shandong Agric Univ 29(4):116–120

    Google Scholar 

  • Xu LJ, Fu DP, Zheng L, Wen K (2002) Effect of pruning on light density, yield and biomass of crops in poplar–crop intercrop** system. Hebei J for Orchard Res 17(1):1–6

    Google Scholar 

  • Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W (2014) Growth of soybean seedlings in relay strip intercrop** systems in relation to light quantity and red: far-red ratio. Field Crop Res 155:245–253. https://doi.org/10.1016/j.fcr.2013.08.011

    Article  Google Scholar 

  • Yang T, Duan ZP, Zhu Y, Gan YW, Wang BJ, Hao XD, Xu WL, Zhang W, Li LH (2019) Effects of distance from a tree line on photosynthetic characteristics and yield of wheat in a jujube tree/wheat agroforestry system. Agrofor Syst 93(4):1545–1555. https://doi.org/10.1007/s10457-018-0267-x

    Article  Google Scholar 

  • Yu T, Song F, Taxi Z, Shi Y (2009) A initial study on the ecology and economic efficiency in jujube–wheat intercrop** system. **%20system&journal=**njiang%20Agric%20Sci&volume=46&pages=338-345&publication_year=2009&author=Yu%2CT&author=Song%2CF&author=Taxi%2CZ&author=Shi%2CY"> Google Scholar 

  • Yuan Y, Wang J, Yan T, Wang Y, Zhang S, Li B (2002) The study on tree shading area and spacing under poplar–crop intercrop** system. J Agric Univ Hebei 25:32–37

    Google Scholar 

  • Zhang W, Liu CR, Xu YT, Yang L, ** systems. J Triticeae Crops 33:1019–1024

    CAS  Google Scholar 

  • Zhang W, Li JM, Liu CR, Xu YT, Yang XH, Gong P, Lu CS, Zhang P (2014) The difference of almond crown-shapes and its influence on wheat growth and yield in the intercrop** system of south **%20system%20of%20south%20**njiang&journal=Acta%20Agric%20Boreali-Occidentalis%20Sinica&volume=23&issue=1&pages=154-160&publication_year=2014&author=Zhang%2CW&author=Li%2CJM&author=Liu%2CCR&author=Xu%2CYT&author=Yang%2CXH&author=Gong%2CP&author=Lu%2CCS&author=Zhang%2CP"> Google Scholar 

  • Zhang W, ** in Southern **njiang. Acta Agriculturae Boreali-Occidentalis Sinica 025:997–1005. https://doi.org/10.7606/j.issn.1004-1389.2016.07.007

    Article  Google Scholar 

  • Zhang W, ** systems in southern **njiang. **njiang Agric Sci 53:25–33. https://doi.org/10.6048/j.issn.1001-4330.2016.03.004

    Article  Google Scholar 

  • Zhang W, ** area light condition in almond–winter wheat intercrop** systems. Chin J Eco-Agric 24(140):63–71. https://doi.org/10.13930/j.cnki.cjea.151160

    Article  Google Scholar 

  • Zhang W, Wang BJ, Gan YW, Duan ZP, Hao XD, Xu WL, Li LH (2017) Different tree age affects light competition and yield in wheat grown as a companion crop in jujube–wheat agroforestry. Agrofor Syst. https://doi.org/10.1007/s10457-017-0160-z

    Article  Google Scholar 

  • Zhang W, Liu CR, Zhou YM, Zhou H (2019) Correlation analysis between tree structure, light environment and wheat yield of almond–winter wheat intercrop** mode. **%20mode&journal=**njiang%20Agric%20Sci&volume=56&pages=2238-2246&publication_year=2019&author=Zhang%2CW&author=Liu%2CCR&author=Zhou%2CYM&author=Zhou%2CH"> Google Scholar 

  • Zhao H, He C, Wang R, Yang Q, Deng Z, Wang H (2008) Effects of climate warming on spring wheat growth and yield in high-altitude, cold and dankness region. Chin J Ecol 27:2111–2117. https://doi.org/10.3724/SP.J.1035.2008.00038

    Article  Google Scholar 

Download references

Funding

Natural Science Foundation of **njiang Province, 31560138, Wen Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or Long Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., **. Agroforest Syst 96, 387–406 (2022). https://doi.org/10.1007/s10457-021-00726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00726-3

Keywords

Navigation