Log in

Combined error estimates for local fluctuations of SPDEs

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we study the numerical approximation of local fluctuations of certain classes of parabolic stochastic partial differential equations (SPDEs). Our focus is on effects for small spatially correlated noise on a time scale before large deviation effects have occurred. In particular, we are interested in the local directions of the noise described by a covariance operator. We introduce a new strategy and prove a Combined ERror EStimate (CERES) for the five main errors: the spatial discretization error, the local linearization error, the noise truncation error, the local relaxation error to steady state, and the approximation error via an iterative low-rank matrix algorithm. In summary, we obtain one CERES describing, apart from modelling of the original equations and standard round-off, all sources of error for a local fluctuation analysis of an SPDE in one estimate. To prove our results, we rely on a combination of methods from optimal Galerkin approximation of SPDEs, covariance moment estimates, analytical techniques for Lyapunov equations, iterative numerical schemes for low-rank solution of Lyapunov equations, and working with related spectral norms for different classes of operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Antoulas, A.C., Sorensen, D.C., Zhou, Y.: On the decay rate of Hankel singular values and related issues. Syst. Control Lett. 46(5), 323–342 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Baars, S., Viebahn, J.P., Mulder, T.E., Kuehn, C., Wubs, F.W., Dijkstra, H.A.: Continuation of probability density functions using a generalized Lyapunov approach. J Comput. Phys. 336(1), 627–643 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Baker, J., Embree, M., Sabino, J.: Fast singular value decay for Lyapunov solutions with nonnormal coefficients. SIAM J Matrix Anal. Appl. 36(2), 656–668 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bartels, R.H., Stewart, G.W.: A solution of the equation AX + XB = C. Commun. ACM 15, 820–826 (1972)

    MATH  Google Scholar 

  6. Beckermann, B.: An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM J. Num. Anal. 49(6), 2430–2450 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Beckermann, B., Townsend, A.: On the singular values of matrices with displacement structure. SIAM J. Matrix Anal. Appl. 38(4), 1227–1248 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bellman, R.: Introduction to matrix analysis. McGraw-Hill, New York (1960)

  9. Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142–162 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36(1), 32–52 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Berglund, N., Gentz, B.: Noise-induced phenomena in slow-fast dynamical systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes. Ann. Rev. Phys. Chem. 53, 291–318 (2002)

    Google Scholar 

  13. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for SPDE’s: a comparison. Expositiones Math. 29(1), 67–109 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Druskin, V., Knizhnerman, L.A., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford, Clarendon Press (1989)

    MATH  Google Scholar 

  16. Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66(5), 052301 (2002)

    Google Scholar 

  17. Ellner, N.S., Wachspress, E.L.: Alternating direction implicit iteration for systems with complex spectra. SIAM J. Numer Anal. 28(3), 859–870 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Ern, A., Guermond, J.-L.: Theory and practice of finite elements. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Gardiner, C.: Stochastic methods. Springer, Berlin (2009). Germany 4th edition

    MATH  Google Scholar 

  20. Ghanem, R.G., Spanos, P.D.: Stochastic finite elements: a spectral approach. Courier Corporation (2003)

  21. Goldys, B., Van Neerven, J.M.A.M.: Transition semigroups of Banach space-valued Ornstein-Uhlenbeck processes. Acta Applicandae Mathematica 76, 283–330 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Golub, G.H., van Loan, C.: Matrix computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  23. Grasedyck, L.: Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation. Numer. Lin. Alg. Appl. 11, 371–389 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Hancock, H.: Lectures on the theory of elliptic functions. Dover Publications, USA (1958)

    MATH  Google Scholar 

  25. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Google Scholar 

  26. Henry, D.: Geometric theory of semilinear parabolic equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  27. Hu, G.-D., Liu, M.: The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390(1), 145–154 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77, 205–244 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Jentzen, A., Röckner, M.: A Milstein scheme for SPDEs. ar**v:1001.2751v4, pp. 1–37 (2012)

  30. Jentzen, A., Röckner, M.: Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise. J Differential Equat. 252, 114–136 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Kallenberg, O.: Foundations of modern probability, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  32. Kielhoefer, H.: Bifurcation theory: an introduction with applications to PDEs. Springer, Berlin (2004)

    Google Scholar 

  33. Krauskopf, B., Osinga, H.M., Galán-Vique, J.: editors. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. Kruse, R.: Optimal error estimates for Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34, 217–251 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with nonlinear multiplicative trace-class noise. Electron. J Probab. 17, 1–19 (2012)

    MATH  Google Scholar 

  36. Kuehn, C.: Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM J. Sci. Comp. 34(3), A1635–A1658 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Kuehn C.: Numerical continuation and SPDE stability for the 2d cubic-quintic Allen-Cahn equation. SIAM/ASA J Uncertain. Quantif. 3(1), 762–789 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Kuehn, C.: Moment closure - a brief review. In: Schöll, E., Klapp, S., Hövel, P. (eds.) Control of self-organizing nonlinear systems, pp 253–271. Springer, Berlin (2016)

  39. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Dissertation, OVGU Magdeburg, Shaker Verlag (2016)

  40. Kürschner, P.: Approximate residual minimizing shift parameters for the low-rank ADI iteration. Electron. Trans. Numer. Anal. 51, 240–261 (2019)

    MathSciNet  Google Scholar 

  41. Lang, A., Larsson, S., Schwab, C.: Covariance structure of parabolic stochastic partial differential equations. Stoch PDE: Anal. Comp. 1(2), 351–364 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Lawden, D. F.: Elliptic functions and applications. Springer, New York (1989)

    MATH  Google Scholar 

  43. Lelièvre, T., Stoltz, G., Rousset, M.: Free energy computations: a mathematical perspective. World Scientific (2010)

  44. Li, J.-R., White, J.: Low rank solution of Lyapunov equations. SIAM J Matrix Anal. Appl. 24(1), 260–280 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Lord, G.J., Powell, C.E., Shardlow, T.: An introduction to computational stochastic PDEs. CUP (2014)

  46. Le Maître, O., Knio, O.M.: Spectral Methods for Uncertainty Quantification: with Applications to Computational Fluid Dynamics. Springer, Berlin (2010)

    MATH  Google Scholar 

  47. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer Anal. 46(5), 2309–2345 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40, 139–144 (2000)

    MathSciNet  MATH  Google Scholar 

  49. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  50. Prévot, C., Róckner, M.: A concise course on stochastic partial differential equations, volume 1905 of Lecture Notes in Mathematics. Springer (2008)

  51. Robinson, J.C.: Infinite-dimensional dynamical systems. CUP (2001)

  52. Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  53. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified smith method. PhD thesis, Rice University, Houston, Texas (2007)

  54. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Socha, L.: Linearization methods for stochastic dynamic systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  56. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  57. Wachspress, E.L.: Extended application of alternating direction implicit iteration model problem theory. J. Soc. Ind. Appl. Math. 11(4), 994–1016 (1963)

    MathSciNet  MATH  Google Scholar 

  58. Wachspress, E.L.: The ADI model problem. Springer, New York (2013)

    MATH  Google Scholar 

  59. Wentzell, A.D., Freidlin, M.I.: On small random perturbations of dynamical systems. Russ. Marth. Surv. 25, 1–55 (1970)

    MathSciNet  MATH  Google Scholar 

  60. **u, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci Comput. 27(3), 1118–1139 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

CK would like to thank the VolkswagenStiftung for support via a Lichtenberg Professorship. Furthermore, CK would like to thank Daniele Castellano for interesting discussions regarding moment equations. The work on this article was done while PK was affiliated with the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany. We also thank two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kürschner.

Additional information

Communicated by: Ivan Oseledets

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuehn, C., Kürschner, P. Combined error estimates for local fluctuations of SPDEs. Adv Comput Math 46, 11 (2020). https://doi.org/10.1007/s10444-020-09766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09766-2

Keywords

Mathematics subject classification (2010)

Navigation