Log in

In Vivo Three-Dimensional Geometric Reconstruction of the Mouse Aortic Heart Valve

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lerman, D. A., S. Prasad, and N. Alotti. Calcific aortic valve disease: molecular mechanisms and therapeutic approaches. Eur. Cardiol. Rev. 10(2):108, 2015.

    Article  Google Scholar 

  2. Tasoudis, P. T., D. N. Varvoglis, E. Vitkos, K. S. Mylonas, M. P. Sa, J. S. Ikonomidis, T. G. Caranasos, and T. Athanasiou. Mechanical versus bioprosthetic valve for aortic valve replacement: systematic review and meta-analysis of reconstructed individual participant data. Eur. J. Cardio-Thorac. Surg. 62(1):ezac268, 2022.

    Article  Google Scholar 

  3. Kheradvar, A., R. Zareian, S. Kawauchi, R. L. Goodwin, and S. Rugonyi. Animal models for heart valve research and development. Drug Discov. Today. 24:55–62, 2017.

    Google Scholar 

  4. Cheek, J. D., E. E. Wirrig, C. M. Alfieri, J. F. James, and K. E. Yutzey. Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. J. Mol. Cell. Cardiol. 52(3):689–700, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lincoln, J., C. M. Alfieri, and K. E. Yutzey. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev. Dyn. 230(2):239–250, 2004. https://doi.org/10.1002/dvdy.20051.

    Article  CAS  PubMed  Google Scholar 

  6. Colvee, E., and J. M. Hurle. Maturation of the extracellular material of the semilunar heart valves in the mouse. Anatomy Embryol. 162:343–352, 1981.

    Article  CAS  Google Scholar 

  7. Rego, B. V., A. M. Pouch, J. H. Gorman, R. C. Gorman, and M. S. Sacks. Patient-specific quantification of normal and bicuspid aortic valve leaflet deformations from clinically derived images. Ann. Biomed. Eng. 50:1–15, 2022. https://doi.org/10.1007/s10439-021-02882-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rotman, O. M., M. Bianchi, R. P. Ghosh, B. Kovarovic, and D. Bluestein. Principles of tavr valve design, modelling, and testing. Expert Rev Med. Devices. 15:771–791, 2018. https://doi.org/10.1080/17434440.2018.1536427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emendi, M., F. Sturla, R. P. Ghosh, M. Bianchi, F. Piatti, F. R. Pluchinotta, D. Giese, M. Lombardi, A. Redaelli, and D. Bluestein. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid–structure interaction approach. Ann. Biomed. Eng. 49:627–641, 2021.

    Article  PubMed  Google Scholar 

  10. Lavon, K., A. Morany, R. Halevi, A. Hamdan, E. Raanani, D. Bluestein, and R. Haj-Ali. Progressive calcification in bicuspid valves: a coupled hemodynamics and multiscale structural computations. Ann. Biomed. Eng. 49:3310–3322, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pouch, A. M., B. M. Jackson, P. A. Yushkevich, J. H. Gorman 3rd., and R. C. Gorman. 4d-transesophageal echocardiography and emerging imaging modalities for guiding mitral valve repair. Ann. Cardiothorac. Surg. 4(5):461–462, 2015. https://doi.org/10.3978/j.issn.2225-319X.2015.02.01.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pouch, A. M., C. Xu, P. A. Yushkevich, A. S. Jassar, M. Vergnat, J. H. Gorman 3rd., R. C. Gorman, C. M. Sehgal, and B. M. Jackson. Semi-automated mitral valve morphometry and computational stress analysis using 3d ultrasound. J. Biomech. 45(5):903–907, 2012. https://doi.org/10.1016/j.jbiomech.2011.11.033.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sewell-Loftin, M.-K., C. B. Brown, H. S. Baldwin, and W. D. Merryman. Novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. J. Heart Valve Dis. 21(4):513, 2012.

    PubMed  PubMed Central  Google Scholar 

  14. Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B. 362(1484):1369–1391, 2007.

    Article  Google Scholar 

  15. Sacks, M. S., W. D. Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804–1824, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feng, X., Y. Liu, D. Kamensky, D. W. McComb, C. K. Breuer, and M. S. Sacks. Functional mechanical behavior of the murine pulmonary heart valve. Sci. Rep. 13(1):12852, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y., X. Feng, H. Liu, D. McComb, C. Breuer, and M. Sacks. On the shape and structure of the murine pulmonary heart valve. Sci. Rep. 11(1):14078, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damen, F. W., A. G. Berman, A. H. Soepriatna, J. M. Ellis, S. D. Buttars, K. L. Aasa, and C. J. Goergen. High-frequency 4-dimensional ultrasound (4dus): a reliable method for assessing murine cardiac function. Tomography. 3(4):180–187, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aggarwal, A. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function. Biomech. Model. Mechanobiol. 16(4):1309–1327, 2017. https://doi.org/10.1007/s10237-017-0889-3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal, A., A. M. Pouch, E. Lai, J. Lesicko, P. A. Yushkevich, J. H. Gorman III., R. C. Gorman, and M. S. Sacks. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J. Biomech. 2016. https://doi.org/10.1016/j.jbiomech.2016.04.038.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aggarwal, A., and M. S. Sacks. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure. Biomech. Model. Mechanobiol. 1–24, 2005.

  22. Damen, F., A. Adelsperger, K. Wilson, and C. Goergen. Comparison of traditional and integrated digital anesthetic vaporizers. J. Am. Assoc. Lab. Anim. 54(756–762):390, 2015.

    Google Scholar 

  23. Damen, F. W., J. P. Salvas, A. S. Pereyra, J. M. Ellis, and C. J. Goergen. Muscle mechanics and ventricular function: Improving characterization of hypertrophy-induced murine cardiac dysfunction using four-dimensional ultrasound-derived strain map**. Am. J. Physiol.-Heart Circ. Physiol. 321(1):H197, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piegl, L., and W. Tiller. The NURBS Book. New York: Springer, 2012.

    Google Scholar 

  25. Aggarwal, A., A. M. Pouch, E. Lai, J. Lesicko, P. A. Yushkevich, J. H. GormanIii, R. C. Gorman, and M. S. Sacks. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J. Biomech. 49:2481–2490, 2016. https://doi.org/10.1016/j.jbiomech.2016.04.038.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aggarwal, A., and M. S. Sacks. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure. Biomech. Model. Mechanobiol. 15:909–932, 2016. https://doi.org/10.1007/s10237-015-0732-7.

    Article  PubMed  Google Scholar 

  27. Otto, C. M. Calcific aortic valve disease: new concepts. Semin. Thorac. Cardiovasc. Surg. 22(4):276–284, 2010. https://doi.org/10.1053/j.semtcvs.2011.01.009.

    Article  PubMed  Google Scholar 

  28. Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 111(24):3316–3326, 2005. https://doi.org/10.1161/circulationaha.104.486738.

    Article  PubMed  Google Scholar 

  29. Freeman, R. V., and C. M. Otto. Management of asymptomatic valvular aortic stenosis. Indian Heart J. 54(1):31–38, 2002.

    PubMed  Google Scholar 

  30. Kurtz, C. E., and C. M. Otto. Aortic stenosis: clinical aspects of diagnosis and management, with 10 illustrative case reports from a 25-year experience. Medicine. 89(6):349–379, 2010. https://doi.org/10.1097/MD.0b013e3181fe5648.

    Article  PubMed  Google Scholar 

  31. Beckmann, E., J. B. Grau, R. Sainger, P. Poggio, and G. Ferrari. Insights into the use of biomarkers in calcific aortic valve disease. J. Heart Valve Dis. 19(4):441–452, 2010.

    PubMed  PubMed Central  Google Scholar 

  32. Grau, J. B., P. Poggio, R. Sainger, W. J. Vernick, W. F. Seefried, E. Branchetti, B. C. Field, J. E. Bavaria, M. A. Acker, and G. Ferrari. Analysis of osteopontin levels for the identification of asymptomatic patients with calcific aortic valve disease. Ann. Thorac. Surg. 93(1):79–86, 2012. https://doi.org/10.1016/j.athoracsur.2011.08.036.

    Article  PubMed  Google Scholar 

  33. Yu, P.-J., A. Skolnick, G. Ferrari, K. Heretis, P. Mignatti, G. Pintucci, B. Rosenzweig, J. Diaz-Cartelle, I. Kronzon, G. Perk, H. I. Pass, A. C. Galloway, E. A. Grossi, and J. B. Grau. Correlation between plasma osteopontin levels and aortic valve calcification: potential insights into the pathogenesis of aortic valve calcification and stenosis. J. Thorac. Cardio-Vasc. Surg. 138(1):196–199, 2009. https://doi.org/10.1016/j.jtcvs.2008.10.045.

    Article  Google Scholar 

  34. Parolari, A., E. Tremoli, L. Cavallotti, M. Trezzi, S. Kassem, C. Loardi, F. Veglia, G. Ferrari, D. Pacini, and F. Alamanni. Do statins improve outcomes and delay the progression of non-rheumatic calcific aortic stenosis? Heart. 97(7):523–529, 2011. https://doi.org/10.1136/hrt.2010.215046.

    Article  CAS  PubMed  Google Scholar 

  35. Cowell, S. J., D. E. Newby, R. J. Prescott, P. Bloomfield, J. Reid, D. B. Northridge, and N. A. Boon. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352(23):2389–2397, 2005. https://doi.org/10.1056/NEJMoa043876.

    Article  CAS  PubMed  Google Scholar 

  36. Benton, J. A., H. B. Kern, L. A. Leinwand, P. D. Mariner, and K. S. Anseth. Statins block calcific nodule formation of valvular interstitial cells by inhibiting alpha-smooth muscle actin expression. Arterioscler. Thromb. Vasc. Biol. 29(11):1950–1957, 2009. https://doi.org/10.1161/atvbaha.109.195271.

    Article  CAS  PubMed  Google Scholar 

  37. Rossebo, A. B., T. R. Pedersen, K. Boman, P. Brudi, J. B. Chambers, K. Egstrup, E. Gerdts, C. Gohlke-Barwolf, I. Holme, Y. A. Kesaniemi, W. Malbecq, C. A. Nienaber, S. Ray, T. Skjaerpe, K. Wachtell, and R. Willenheimer. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359(13):1343–1356, 2008. https://doi.org/10.1056/NEJMoa0804602.

    Article  PubMed  Google Scholar 

  38. Rajamannan, N. M. Calcific aortic stenosis: medical and surgical management in the elderly. Curr. Treat. Options Cardiovasc. Med. 7(6):437–442, 2005. https://doi.org/10.1007/s11936-005-0028-9.

    Article  PubMed  Google Scholar 

  39. Mulholland, D. L., and A. I. Gotlieb. Cell biology of valvular interstitial cells. Can. J. Cardiol. 12(3):231–236, 1996.

    CAS  PubMed  Google Scholar 

  40. Schoen, F. J. Cardiac valves and valvular pathology: update on function, disease, repair, and replacement. Cardiovasc. Pathol. 14(4):189–194, 2005.

    Article  PubMed  Google Scholar 

  41. Vesely, I., J. E. Barber, and N. B. Ratliff. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J. Heart Valve Dis. 10(4):471–477, 2001.

    CAS  PubMed  Google Scholar 

  42. Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, Jr., D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, Jr., A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, R. Nishimura, R. L. Page, B. Riegel, ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 48(3):e1–148, 2006. https://doi.org/10.1016/j.jacc.2006.05.021

  44. Guidoin, R., Y. Douville, M. A. Clavel, Z. Zhang, M. Nutley, P. Pibarot, and G. Dionne. The marvel of percutaneous cardiovascular devices in the elderly. Ann. N. Y. Acad. Sci. 1197:188–199, 2010. https://doi.org/10.1111/j.1749-6632.2010.05517.x.

    Article  PubMed  Google Scholar 

  45. Sider, K. L., M. C. Blaser, C. A. Simmons, et al. Animal models of calcific aortic valve disease. Int. J. Inflamm.2011(1):364310, 2011.

    Google Scholar 

  46. Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.

    Article  CAS  PubMed  Google Scholar 

  47. Chakraborty, S., J. Cheek, B. Sakthivel, B. J. Aronow, and K. E. Yutzey. Shared gene expression profiles in develo** heart valves and osteoblast progenitor cells. Physiol. Genomics. 35(1):75–85, 2008. https://doi.org/10.1152/physiolgenomics.90212.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hinton, R. B., Jr., J. Lincoln, G. H. Deutsch, H. Osinska, P. B. Manning, D. W. Benson, and K. E. Yutzey. Extracellular matrix remodeling and organization in develo** and diseased aortic valves. Circ. Res. 98(11):1431–1438, 2006. https://doi.org/10.1161/01.RES.0000224114.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant HL142504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Ethics declarations

Conflict of interest

Craig Goergen is a paid consultant of FUJIFILM VisualSonics Inc. The other authors declare no conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gramling, D.P., van Veldhuisen, A.L., Damen, F.W. et al. In Vivo Three-Dimensional Geometric Reconstruction of the Mouse Aortic Heart Valve. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03555-4

Keywords

Navigation