Log in

Dynamic analysis of beta oscillations in Parkinsonian neural networks with the pedunculopontine nucleus under optogenetic control

光遗传刺激下对含脚桥核的帕金森神经网络中beta振荡的动力学分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Clinical experiments have proven that the pedunculopontine nucleus (PPN) plays a crucial role in the modulation of beta oscillations in Parkinson’s disease (PD). Here, we propose a new computational framework by introducing the PPN and related synaptic connections to the classic basal ganglia-thalamo-cortical model. Fascinatingly, the improved model can not only simulate the basic saturated and beta activities mentioned in previous studies but also produce the normal alpha rhythm that is much closer to physiological phenomena. Specifically, the results show that Parkinsonian oscillation activities can be controlled and modulated by the connection strength between the PPN and the globus pallidus internal nucleus (GPi) and the subthalamic nucleus (STN), supporting the fact that PPN is overinhibited in PD. Meanwhile, the internal mechanism underlying these state transitions is further explained from the perspective of dynamics. Additionally, both deep brain stimulation (DBS) and optogenetic technology are considered effective in terms of abnormal oscillations. Especially when a low-frequency DBS is added to the PPN, beta oscillations can be suppressed, but it is excited again as the DBS’s frequency gradually increases to a larger value. These results coincide with the experimental results that low-frequency stimulation of the PPN is effective, and verify the rationality of the model. Furthermore, we show that optogenetic stimulation of the globus pallidus external (GPe) expressing excitatory channelrhodopsin (ChR2) can effectively inhibit beta oscillations, whereas exciting the STN and PPN has a limited effect. These results are consistent with experimental reports suggesting that the symptoms of PD’s movement disorder can be alleviated under the GPe-ChR2, but not STN-ChR2, situation. Although the functional role of the PPN and the feasibility of optogenetic stimulation remain to be clinically explored, the results obtained help us understand the mechanisms of beta oscillations in PD.

摘要

临床实验证明, 脚桥核(PPN)在帕金森病(PD)的beta振荡调控中起着至关重要的作用. 本文通过引入PPN改进了皮层-基底神经 节-丘脑网络动力学模型. 研究发现, 该模型不仅可以模拟先前研究中涉及的beta频带(13–30 Hz)的PD病态振荡行为, 还可以产生更接** **常生理活动的alpha节律. 具体地, PPN-基底神经节重要环路可以诱导beta振荡状态的产生、转迁和终止. 同时, 具体分析了其发生分 岔转迁行为的动力学机制. 此外, 模拟重现了低频DBS作用于PPN有效, 而高频刺激无效的实验现象, 进一步验证了改进模型的合理性. 研究结果表明, 在适当的光刺激条件下, GPe 的兴奋性光刺激可以有效抑制beta振荡, 而刺激STN的效果则有限, 并且理论实现了光遗 传学刺激靶向PPN以讨论对病态beta振荡的调控效果, 这些结果与实验现象一致. 虽然PPN的功能作用和光遗传刺激的可行性仍有待临 床探索, 但所获得的结果有助于我们进一步了解PD中beta振荡的调控机制.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. I. Litvan, K. P. Bhatia, D. J. Burn, C. G. Goetz, A. E. Lang, I. McKeith, N. Quinn, K. D. Sethi, C. Shults, and G. K. Wenning, SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders, Movement Disord. 18, 467 (2003).

    Article  Google Scholar 

  2. C. Raza, R. Anjum, and N. A. Shakeel, Parkinson’s disease: Mechanisms, translational models and management strategies, Life Sci. 226, 77 (2019).

    Article  Google Scholar 

  3. D. Caligiore, R. C. Helmich, M. Hallett, A. A. Moustafa, L. Timmermann, I. Toni, and G. Baldassarre, Parkinson’s disease as a system-level disorder, npj Parkinsons Dis. 2, 1 (2016).

    Article  Google Scholar 

  4. E. Stein, and I. Bar-Gad, Beta oscillations in the cortico-basal ganglia loop during parkinsonism, Exp. Neurol. 245, 52 (2013).

    Article  Google Scholar 

  5. H. Bronte-Stewart, and A. Merola, Hope vs. hype: Closed loop technology will provide more meaningful improvement vs. directional leads in deep brain stimulation, Parkinsonism Relat. Disord. 113, 105452 (2023).

    Article  Google Scholar 

  6. A. Pawar, and K. R. Pardasani, Computational model of calcium dynamics-dependent dopamine regulation and dysregulation in a dopaminergic neuron cell, Eur. Phys. J. Plus 138, 30 (2023).

    Article  Google Scholar 

  7. T. O. West, P. J. Magill, A. Sharott, V. Litvak, S. F. Farmer, and H. Cagnan, Stimulating at the right time to recover network states in a model of the cortico-basal ganglia-thalamic circuit, PLoS Comput Biol 18, e1009887 (2022).

    Article  Google Scholar 

  8. Y. Kang, Y. Fu, and Y. Chen, Signal-to-noise ratio gain of an adaptive neuron model with Gamma renewal synaptic input, Acta Mech. Sin. 38, 521347 (2022).

    Article  Google Scholar 

  9. D. Terman, J. E. Rubin, A. C. Yew, and C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci. 22, 2963 (2002).

    Article  Google Scholar 

  10. Gillies, D. Willshaw, and Z. Li, Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia, Proc. R. Soc. Lond. B 269, 545 (2002).

    Article  Google Scholar 

  11. A. Leblois, T. Boraud, W. Meissner, H. Bergman, and D. Hansel, Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia, J. Neurosci. 26, 3567 (2006).

    Article  Google Scholar 

  12. A. J. N. Holgado, J. R. Terry, and R. Bogacz, Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci. 30, 12340 (2010).

    Article  Google Scholar 

  13. E. J. Müller, and P. A. Robinson, Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson’s disease, PLoS Comput. Biol. 14, e1006217 (2018).

    Article  Google Scholar 

  14. E. J. Müller, and P. A. Robinson, Suppression of Parkinsonian beta oscillations by deep brain stimulation: Determination of effective protocols, Front. Comput. Neurosci. 12, 98 (2018).

    Article  Google Scholar 

  15. Y. Yu, and Q. Wang, Oscillation dynamics in an extended model of thalamic-basal ganglia, NOnlinear Dyn. 98, 1065 (2019).

    Article  Google Scholar 

  16. J. Mena-Segovia, J. P. Bolam, and P. J. Magill, Pedunculopontine nucleus and basal ganglia: Distant relatives or part of the same family? Trends Neurosci. 27, 585 (2004).

    Article  Google Scholar 

  17. K. Saitoh, S. Hattori, W. Song, T. Isa, and K. Takakusaki, Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus, Eur. J. Neurosci. 18, 879 (2003).

    Article  Google Scholar 

  18. K. V. Baev, K. A. Greene, F. F. Marciano, J. E. S. Samanta, A. G. Shetter, K. A. Smith, M. A. Stacy, and R. F. Spetzler, Physiology and pathophysiology of cortico-basal ganglia-thalamocortical loops: Theoretical and practical aspects, Prog. NeuropsychoPharmacol. Biol. Psychiatry 26, 771 (2002).

    Article  Google Scholar 

  19. H. Wang, and M. Morales, Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat, Eur. J. Neurosci. 29, 340 (2009).

    Article  Google Scholar 

  20. B. Lavoie, and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra, J. Comp. Neurol. 344, 232 (1994).

    Article  Google Scholar 

  21. M. S. Lee, J. O. Rinne, and C. D. Marsden, The pedunculopontine nucleus: Its role in the genesis of movement disorders, Yonsei Med. J. 41, 167 (2000).

    Article  Google Scholar 

  22. M. D. Bevan, and J. P. Bolam, Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat, J. Neurosci. 15, 7105 (1995).

    Article  Google Scholar 

  23. B. Ford, C. J. Holmes, L. Mainville, and B. E. Jones, GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus, J. Comp. Neurol. 363, 177 (1995).

    Article  Google Scholar 

  24. S. Breit, R. Bouali-Benazzouz, A. Benabid, and A. Benazzouz, Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat, Eur. J. Neurosci. 14, 1833 (2001).

    Article  Google Scholar 

  25. M. F. Jeon, Y. Ha, Y. H. Cho, B. H. Lee, Y. G. Park, and J. W. Chang, Effect of ipsilateral subthalamic nucleus lesioning in a rat Parkinsonian model: Study of behavior correlated with neuronal activity in the pedunculopontine nucleus, J. Neurosurg. 99, 762 (2003).

    Article  Google Scholar 

  26. M. A. J. Lourens, H. G. E. Meijer, T. Heida, E. Marani, and S. A. van Gils, The pedunculopontine nucleus as an additional target for deep brain stimulation, Neural Netw. 24, 617 (2011).

    Article  Google Scholar 

  27. Y. Yu, H. Zhang, L. Zhang, and Q. Wang, Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease, Phys. A-Stat. Mech. its Appl. 525, 834 (2019).

    Article  MathSciNet  Google Scholar 

  28. A. H. Niktarash, and G. A. Shahidi, Effects of the activity of the internal globus pallidus-pedunculopontine loop on the transmission of the subthalamic nucleus-external globus pallidus-pacemaker oscillatory activities to the cortex, J. Comput. Neurosci. 16, 113 (2004).

    Article  Google Scholar 

  29. Z. Zakaria, Z. Idris, S. Abdul Halim, A. R. I. Ghani, and J. M. Abdullah, Subthalamic nucleus (STN)-deep brain stimulation reduces the power of mu and beta rhythms and enhances synchrony at the motor cortices in Parkinson’s disease: A report of two cases, Cureus 15, (2023).

  30. D. Morgan, and W. Fung, Deep brain stimulation for Parkinson’s disease: An update on efficacy and an emerging alternative, J. Neurol. 268, 1127 (2021).

    Article  Google Scholar 

  31. T. G. Guimarães, and R. G. Cury, Troubleshooting gait problems in Parkinson’s disease patients with subthalamic nucleus deep brain stimulation, J. Parkinson’s Dis. 12, 737 (2022).

    Article  Google Scholar 

  32. L. A. Steiner, and L. Milosevic, A convergent subcortical signature to explain the common efficacy of subthalamic and pallidal deep brain stimulation, Brain Commun. 5, fcad033 (2023).

    Article  Google Scholar 

  33. C. Lin, M. C. Ridder, and P. Sah, The PPN and motor control: Preclinical studies to deep brain stimulation for Parkinson’s disease, Front. Neural Circ. 17, 1095441 (2023).

    Article  Google Scholar 

  34. K. Yu, Z. Ren, Y. Hu, S. Guo, X. Ye, J. Li, and Y. Li, Efficacy of caudal pedunculopontine nucleus stimulation on postural instability and gait disorders in Parkinson’s disease, Acta Neurochir. 164, 575 (2022).

    Article  Google Scholar 

  35. S. Breit, L. Milosevic, G. Naros, I. Cebi, D. Weiss, and A. Gharabaghi, Structural-functional correlates of response to pedunculopontine stimulation in a randomized clinical trial for axial symptoms of Parkinson’s disease, J. Parkinson’s Dis. 13, 563 (2023).

    Article  Google Scholar 

  36. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, Optical deconstruction of Parkinsonian neural circuitry, Science 324, 354 (2009).

    Article  Google Scholar 

  37. K. J. Mastro, K. T. Zitelli, A. M. Willard, K. H. Leblanc, A. V. Kravitz, and A. H. Gittis, Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice, Nat. Neurosci. 20, 815 (2017).

    Article  Google Scholar 

  38. A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry, Nature 466, 622 (2010).

    Article  Google Scholar 

  39. H. C. Moon, S. Y. Won, E. G. Kim, H. K. Kim, C. B. Cho, and Y. S. Park, Effect of optogenetic modulation on entopeduncular input affects thalamic discharge and behavior in an AAV2-α-synuclein-induced hemiparkinson rat model, Neurosci. Lett. 662, 129 (2018).

    Article  Google Scholar 

  40. H. Yan, and J. Wang, Quantification of motor network dynamics in Parkinson’s disease by means of landscape and flux theory, PLoS ONE 12, e0174364 (2017).

    Article  Google Scholar 

  41. C. Yan, Q. Liu, and Y. Bi, Bifurcation analyses and potential landscapes of a cortex-basal ganglia-thalamus model, IET Syst. Biol. 15, 101 (2021).

    Article  Google Scholar 

  42. R. J. Moran, N. Mallet, V. Litvak, R. J. Dolan, P. J. Magill, K. J. Friston, and P. Brown, Alterations in brain connectivity underlying beta oscillations in parkinsonism, PLoS Comput. Biol. 7, e1002124 (2011).

    Article  Google Scholar 

  43. K. Nikolic, P. Degenaar, and C. Toumazou, in Modeling and engineering aspects of Channelrhodopsin-2 system for neural photostimulation: Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, 2006, pp. 1626–1629.

  44. N. Grossman, K. Nikolic, C. Toumazou, and P. Degenaar, Modeling study of the light stimulation of a neuron cell with Channelrhodopsin-2 mutants, IEEE Trans. Biomed. Eng. 58, 1742 (2011).

    Article  Google Scholar 

  45. K. Nikolic, N. Grossman, M. S. Grubb, J. Burrone, C. Toumazou, and P. Degenaar, Photocycles of Channelrhodopsin-2, Photochem. Photo-Biol. 85, 400 (2009).

    Article  Google Scholar 

  46. P. Selvaraj, J. W. Sleigh, W. J. Freeman, H. E. Kirsch, and A. J. Szeri, Open loop optogenetic control of simulated cortical epileptiform activity, J. Comput. Neurosci. 36, 515 (2014).

    Article  MathSciNet  Google Scholar 

  47. P. Selvaraj, J. W. Sleigh, H. E. Kirsch, and A. J. Szeri, Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex, Phys. Rev. E 93, 012416 (2016).

    Article  Google Scholar 

  48. Z. Shen, H. Zhang, Z. Cao, L. Yan, Y. Zhao, L. Du, and Z. Deng, Transition dynamics and optogenetic controls of generalized periodic epileptiform discharges, Neural Netw. 149, 1 (2022).

    Article  Google Scholar 

  49. B. R. Aravamuthan, D. A. Bergstrom, R. A. French, J. J. Taylor, L. C. Parr-Brownlie, and J. R. Walters, Altered neuronal activity relationships between the pedunculopontine nucleus and motor cortex in a rodent model of Parkinson’s disease, Exp. Neurol. 213, 268 (2008).

    Article  Google Scholar 

  50. P. A. Pahapill, The pedunculopontine nucleus and Parkinson’s disease, Brain 123, 1767 (2000).

    Article  Google Scholar 

  51. W. Thevathasan, B. Debu, T. Aziz, B. R. Bloem, C. Blahak, C. Butson, V. Czernecki, T. Foltynie, V. Fraix, D. Grabli, C. Joint, A. M. Lozano, M. S. Okun, J. Ostrem, N. Pavese, C. Schrader, C. Tai, J. K. Krauss, and E. Moro, Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: A clinical review, Movement Disord. 33, 10 (2018).

    Article  Google Scholar 

  52. N. Jenkinson, D. Nandi, K. Muthusamy, N. J. Ray, R. Gregory, J. F. Stein, and T. Z. Aziz, Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus, Movement Disord. 24, 319 (2009).

    Article  Google Scholar 

  53. J. A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth, L. H. Tsai, and C. I. Moore, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2, Nat. Protoc. 5, 247 (2010).

    Article  Google Scholar 

  54. D. Dautan, A. Kovács, T. Bayasgalan, M. A. Diaz-Acevedo, B. Pal, and J. Mena-Segovia, Modulation of motor behavior by the mesencephalic locomotor region, Cell Rep. 36, 109594 (2021).

    Article  Google Scholar 

  55. Y. Yu, F. Han, Q. Wang, and Q. Wang, Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks, Cogn. Neurodyn. 16, 667 (2022).

    Article  Google Scholar 

  56. C. Liu, C. Zhou, J. Wang, C. Fietkiewicz, and K. A. Loparo, The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations, Neural Networks 123, 381 (2020).

    Article  Google Scholar 

  57. L. Yan, H. Zhang, Z. Sun, Z. Cao, Z. Shen, and Y. Zhao, Mechanism analysis for excitatory interneurons dominating poly-spike wave and optimization of electrical stimulation, Chaos-An Interdiscip. J. NOnlinear Sci. 32, 033110 (2022).

    Article  Google Scholar 

  58. D. Fan, Q. Wang, and M. Perc, Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures, Sci. Rep. 5, 12618 (2015).

    Article  Google Scholar 

  59. S. Ratnadurai-Giridharan, C. C. Cheung, and L. L. Rubchinsky, Effects of electrical and optogenetic deep brain stimulation on synchronized oscillatory activity in Parkinsonian basal ganglia, IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2188 (2017).

    Article  Google Scholar 

  60. Q. Lu, H. Gu, Z. Yang, X. Shi, L. Duan, and Y. Zheng, Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: Experiments and analysis, Acta Mech. Sin. 24, 593 (2008).

    Article  Google Scholar 

  61. Z. Shen, H. Zhang, L. Du, Z. Deng, and J. Kurths, Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model, Chaos Solitons Fractals 167, 113038 (2023).

    Article  Google Scholar 

  62. H. Zhang, Y. Yu, Z. Deng, and Q. Wang, Activity pattern analysis of the subthalamopallidal network under ChannelRhodopsin-2 and Halorhodopsin photocurrent control, Chaos Solitons Fractals 138, 109963 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072265 and 12372064).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yuzhi Zhao: Investigation, Formal analysis, Methodology, Software, Validation, Writing–original draft, Writing–review & editing. Honghui Zhang: Methodology, Funding acquisition, Resources, Supervision, Writing–review & editing. Ying Yu: Conceptualization, Methodology. Lin Du: Funding acquisition, Resources, Supervision, Writing–review & editing. Zichen Deng: Resources, Supervision, Writing–review & editing.

Corresponding author

Correspondence to Honghui Zhang  (张红慧).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, H., Yu, Y. et al. Dynamic analysis of beta oscillations in Parkinsonian neural networks with the pedunculopontine nucleus under optogenetic control. Acta Mech. Sin. 40, 523586 (2024). https://doi.org/10.1007/s10409-024-23586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23586-x

Navigation