Log in

Wall temperature effects on the stability of leeward vortices of a blunt inclined cone

壁温比对钝锥背风流向涡稳定性影响分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Streamwise vortex instability is one of the most potent mechanisms for the transition of the three-dimensional boundary layers. By using the global stability analysis methods, stability characteristics of the leeward vortex over a blunt cone with an angle of attack under a typical wind tunnel condition are studied and are compared to the case with a smaller wall temperature ratio (corresponding to a flight condition). The vortical structure features inward and outward vortices, similar to that in the flight condition. Unlike the flight condition, the outward vortices appear stronger than the inward vortices, resulting in stronger outer-mode instabilities. Although the inner mode is heavily stabilized compared to the flight condition, it can still radiate apparent acoustics. The acoustic sources are computed based on Lighthill’s acoustic analogy, showing that the entropy term measuring the deviation from the isentropic relation is dominant. While Mack second mode is shown to most likely trigger the transition in the flight condition, it is absent in the wind tunnel condition, and a shear-layer mode turns out to be the most dangerous instead. Moreover, the instability frequencies and growth rates of the wind tunnel case are much smaller than those of the flight case, indicating that wall heating may stabilize the leeward vortices.

摘要

流向涡失稳是导致三维边界层转捩的重要机制之一, 通过全局稳定性分析方法研究了风洞工况下带攻角钝锥背风面流向涡的稳定性特征, 并与壁温比较小的工况(对应飞行条件)进行了比较. 风洞工况和飞行工况的涡结构特征相似, 均具有内、外卷涡. 与飞行工况相比, 风洞工况的外卷涡更显著, 导致了更**的外模态不稳定性. 尽管风洞工况内模态更加稳定, 但它仍具有与飞行工况类似的声辐射特征. Lighthill声比拟理论计算表明熵源项是主导声源项. 在飞行工况下, Mack第二模态最有可能引起转捩, 但其在风洞工况中并未被发现, 取而代之的是流向涡剪切失稳模态. 此外, 风洞工况下的模态失稳频率和增长率远小于飞行工况, 表明壁面加热能够稳定流向涡.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. G. Tu, J. Chen, X. Yuan, Q. Yang, M. Duan, Q. Yang, Y. Duan, X. Chen, B. Wan, and X. **ang, Progress in flight tests of hypersonic boundary layer transition, Acta Mech. Sin. 37, 1589 (2021).

    Article  Google Scholar 

  2. J. Chen, G. Tu, Y. Zhang, G. Xu, X. Yuan, and C. Chen, Hypersonic boundary layer transition: What we know, where shall we go, Acta Aerodyn. Sin. 35, 311 (2017).

    Google Scholar 

  3. X. Zhong, and X. Wang, Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers, Annu. Rev. Fluid Mech. 44, 527 (2012).

    Article  MathSciNet  Google Scholar 

  4. C. Lee, and S. Chen, Recent progress in the study of transition in the hypersonic boundary layer, Natl. Sci. Rev. 6, 155 (2019).

    Article  Google Scholar 

  5. V. Theofilis, Global linear instability, Annu. Rev. Fluid Mech. 43, 319 (2011).

    Article  MathSciNet  Google Scholar 

  6. P. Paredes, V. Theofilis, D. Rodriguez, and J. Tendero, in The PSE-3D instability analysis methodology for flows depending strongly on two and weakly on the third spatial dimension: Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, 2011.

  7. M. M. Choudhari, C. Chau-Lyan, J. Thomas, L. Fei, B. Karen, C. Graham, and K. Roger, in Transition analysis for the HIFiRE-5 vehicle: Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, 2009.

  8. P. Paredes, and V. Theofilis, Centerline instabilities on the hypersonic international flight research experimentation HIFiRE-5 elliptic cone model, J. Fluids Struct. 53, 36 (2015).

    Article  Google Scholar 

  9. P. Paredes, R. Gosse, V. Theofilis, and R. Kimmel, Linear modal instabilities of hypersonic flow over an elliptic cone, J. Fluid Mech. 804, 442 (2016).

    Article  MathSciNet  Google Scholar 

  10. S. Zhang, The Instability and Wave Propagation in the Hypersonic 2:1 Elliptic Cone Boundary Layer, Dissertation for Doctoral Degree (Tian** University, Tian**, 2016).

    Google Scholar 

  11. M. M. Choudhari, L. Fei, and P. Paredes, in Streak instabilities on HIFiRE-5 elliptic cone: Proceedings of the AIAA Scitech 2020 Forum, Orlando, 2020.

  12. A. L. Knutson, J. S. Thome, and G. V. Candler, Numerical simulation of instabilities in the boundary-layer transition experiment flowfield, J. Spacecraft Rockets 58, 90 (2021).

    Article  Google Scholar 

  13. J. Thome, A. Knutson, and G. V. Candler, in Boundary layer instabilities on BOLT subscale geometry: Proceedings of the AIAA Scitech 2019 Forum, San Diego, 2019.

  14. F. Li, M. M. Choudhari, and P. Paredes, Streak instability analysis on BOLT configuration, AIAA 2020-3028, 2020.

  15. X. Chen, S. Dong, G. Tu, X. Yuan, and J. Chen, Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body, J. Fluid Mech. 938, A8 (2022).

    Article  MathSciNet  Google Scholar 

  16. X. Chen, J. Chen, S. Dong, G. Xu, and X. Yuan, Stability analysises of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack, Acta Aerodyn. Sin. 38, 299 (2020).

    Google Scholar 

  17. X. Li, J. Chen, Z. Huang, Q. Yang, and G. Xu, Stability analysis and transition prediction of streamwise vortices over a yawed cone at Mach 6, Phys. Fluids 32, 124110 (2020).

    Article  Google Scholar 

  18. P. Paredes, A. Scholten, M. Choudhari, and F. Li, Hypersonic boundary-layer transition on blunted cones at angle of attack, AIAA 2021-2886, 2021.

  19. L. Zhang, S. Dong, S. Liu, X. Yuan, J. Chen, and X. Chen, Stability analysis of streamwise vortices over a blunt inclined cone under a hypersonic flight condition, Phys. Fluids 34, 074107 (2022).

    Article  Google Scholar 

  20. P. Paredes, and V. Theofilis, in Spatial linear global instability analysis of the HIFiRE-5 elliptic cone model flow: Proceedings of the 43rd Fluid Dynamics Conference, San Diego, 2013.

  21. X. Li, S. Zhang, J. Liu, Z. Huang, J. Luo, and Y. Zhang, Biglobal instability of streamwise vortex near minor-axis of hypersonic elliptic cone, Acta Aerodyn. Sin. 36, 265 (2018).

    Google Scholar 

  22. Q. Wang, X. **ang, S. Dong, X. Yuan, J. Chen, and X. Chen, Wall temperature effects on the hypersonic boundary-layer transition over an inclined, blunt cone, Phys. Fluids 35, 024107 (2023).

    Article  Google Scholar 

  23. V. Theofilis, Advances in global linear instability analysis of nonparallel and three-dimensional flows, Prog. Aerosp. Sci. 39, 249 (2003).

    Article  Google Scholar 

  24. X. Chen, G. L. Huang, and C. B. Lee, Hypersonic boundary layer transition on a concave wall: Stationary Gortler vortices, J. Fluid Mech. 865, 1 (2019).

    Article  MathSciNet  Google Scholar 

  25. B. T. Chu, On the energy transfer to small disturbances in fluid flow (Part I), Acta Mech. 1, 215 (1965).

    Article  Google Scholar 

  26. L. M. Mack, Boundary-layer linear stability theory, In AGARD-R-709 Special Course on Stability and Transition of Laminar Flow, (1984). pp. 1–81.

  27. X. Chen, J. Chen, X. Yuan, G. Tu, and Y. Zhang, From primary instabilities to secondary instabilities in Gortler vortex flows, Adv. Aerodyn. 1, 19 (2019).

    Article  Google Scholar 

  28. L. M. Mack, On the inviscid acoustic-mode instability of supersonic shear flows, Theoret. Comput. Fluid Dyn. 2, 97 (1990).

    Article  Google Scholar 

  29. C. H. Mortensen, Toward an understanding of supersonic modes in boundary-layer transition for hypersonic flow over blunt cones, J. Fluid Mech. 846, 789 (2018).

    Article  MathSciNet  Google Scholar 

  30. C. L. Chang, H. Kline, and F. Li, Wall cooling effect on high-enthalpy supersonic modes over a cone, AIAA J. 59, 3831 (2021).

    Article  Google Scholar 

  31. P. V. Chuvakhov, and A. V. Fedorov, Spontaneous radiation of sound by instability of a highly cooled hypersonic boundary layer, J. Fluid Mech. 805, 188 (2016).

    Article  MathSciNet  Google Scholar 

  32. N. P. Bitter, and J. E. Shepherd, Stability of highly cooled hypervelocity boundary layers, J. Fluid Mech. 778, 586 (2015).

    Article  MathSciNet  Google Scholar 

  33. C. P. Knisely, and X. Zhong, in An investigation of sound radiation by supersonic unstable modes in hypersonic boundary layers: Proceedings of the 47th AIAA Fluid Dynamics Conference, Denver, 2017.

  34. F. Li, M. Choudhari, and P. Paredes, Secondary instability of Görtler vortices in hypersonic boundary layer over an axisymmetric configuration, Theor. Comput. Fluid Dyn. 36, 205 (2022).

    Article  MathSciNet  Google Scholar 

  35. M. J. Lighthill, On sound generated aerodynamically I. General theory, Proc. R. Soc. Lond. A 211, 564 (1952).

    Article  MathSciNet  Google Scholar 

  36. F. Mao, L. Kang, L. Liu, and J. Wu, A unified theory for gas dynamics and aeroacoustics in viscous compressible flows, Part I. Unbounded fluid, Acta Mech. Sin. 38, 321492 (2022).

    Article  MathSciNet  Google Scholar 

  37. F. Mao, L. Liu, L. Kang, J. Wu, P. Zhang, and Z. Wan, A unified theory for gas dynamics and aeroacoustics in viscous compressible flows. Part II. Sources on solid boundary, Acta Mech. Sin. 38, 321583 (2022).

    Article  MathSciNet  Google Scholar 

  38. J. B. Freund, Noise-source turbulence statistics and the noise from a Mach 0.9 jet, Phys. Fluids 15, 1788 (2003).

    Article  Google Scholar 

  39. P. T. Lew, G. Blaisdell, and A. Lyrintzis, in Investigation of noise sources in turbulent hot jets using large eddy simulation data: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2007.

  40. L. F. Souza, On the odd and even secondary instabilities of Görtler vortices, Theor. Comput. Fluid Dyn. 31, 405 (2017).

    Article  MathSciNet  Google Scholar 

  41. P. Schlatter, L. Brandt, H. C. de Lange, and D. S. Henningson, On streak breakdown in bypass transition, Phys. Fluids 20, 101505 (2008).

    Article  Google Scholar 

  42. P. Paredes, M. M. Choudhari, and F. Li, Instability wave-streak interactions in a high Mach number boundary layer at flight conditions, J. Fluid Mech. 858, 474 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 92052301). The authors are grateful to Dr. Shuaibin Han at CARDC for helpful discussions on acoustic radiation.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ligeng Zhang: Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing. Bingbing Wan: Data curation, Investigation, Resources, Software, Writing – review & editing. Siwei Dong: Data curation, Investigation, Resources, Software, Writing – review & editing. Jianqiang Chen: Conceptualization, Methodology, Resources, Writing – review & editing, Project administration, Funding acquisition. ** Chen: Conceptualization, Data curation, Investigation, Methodology, Resources, Software, Visualization, Writing – review & editing.

Corresponding authors

Correspondence to Jianqiang Chen  (陈坚**) or ** Chen  (陈曦).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wan, B., Dong, S. et al. Wall temperature effects on the stability of leeward vortices of a blunt inclined cone. Acta Mech. Sin. 40, 123563 (2024). https://doi.org/10.1007/s10409-023-23563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23563-x

Navigation