Log in

The initiation characteristics of oblique detonation in acetylene-air mixtures in the finite wedge

乙炔-空气混合物中有限长楔面诱导斜爆轰波的起爆特性

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Oblique detonation waves (ODWs) have been widely studied due to their application in hypersonic propulsion. Most of the previous studies focus on hydrogen fuel, and the induced wedge is always infinite. In this paper, based on the detailed chemical reaction model, the two-dimensional multi-component Euler equations are solved, and the finite wedge-induced oblique detonations for acetylene-air mixtures are investigated numerically and theoretically. Effects of expansion waves, inflow Mach number and equivalence ratio (ER) on initiation characteristics of ODW are studied according to the initiation criterion in the confined space. Results show that the initiation distance of acetylene is relatively larger than the hydrogen fuel, and the convergence position of deflagration waves and the originated position of expansion waves determine the initiation characteristics of ODW. As the originated position of the expansion wave is downstream of the convergence position of the deflagration, the ODW is ignited; Otherwise, the ODW is not initiated. The characteristics length of induction zone presents a U-shaped curve distribution for different ERs, both fuel-rich and lean-burn conditions will result in the non-initiation of ODW.

摘要

斜爆轰波在高超声速推进具有重要的应用潜力, 受到了研究者们的广泛研究. 以往的研究, 大多基于氢气燃料, 且楔面总是 无限长的. 本文基于详细的化学反应模型, 通过求解二维考虑基元反应的多组分欧拉方程, 对乙炔-空气混合物在有限长楔形面诱导 的斜爆轰进行了数值和理论研究. 根据受限空间内的起爆判据, 研究了膨胀波、来流马赫数和当量比对斜爆轰波起爆特性的影响. 结果表明, 乙炔诱导的斜爆轰波的起爆距离相对大于氢燃料诱导的. 爆燃波的会聚位置和膨胀波的产生位置决定了斜爆轰波的起 爆特性. 当膨胀波的产生位置在爆燃波会聚位置的下游, 斜爆轰波被点燃; 否则, 斜爆轰波不会起爆. 诱导区特征长度在不同当量 比下呈U型曲线分布, 无论是富燃还是贫燃都会导致斜爆轰波不起爆.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Jiang, Z. Zhang, Y. Liu, C. Wang, and C. Luo, Criteria for hypersonic airbreathing propulsion and its experimental verification, Chin. J. Aeronauti. 34, 94 (2021).

    Article  Google Scholar 

  2. Z. Jiang, Z. Hu, Y. Wang, and G. Han, Advances in critical technologies for hypersonic and high-enthalpy wind tunnel, Chin. J. Aeronauti. 33, 3027 (2020).

    Article  Google Scholar 

  3. G. **ang, H. Li, R. Cao, and X. Chen, Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios, Fuel 264, 116854 (2020).

    Article  Google Scholar 

  4. Z. Jiang, and H. Yu, Theories and technologies for duplicating hypersonic flight conditions for ground testing, Natl. Sci. Rev. 4, 290 (2017).

    Article  Google Scholar 

  5. J. H. S. Lee, The Detonation Phenomenon (Cambridge University Press, Cambridge, 2008).

    Book  Google Scholar 

  6. G. **ang, X. Gao, X. Jie, X. Li, H. Li, and X. Chen, Flowfield characteristics in sidewall compression inlets, Acta Mech. Sin. 36, 678 (2020).

    Article  Google Scholar 

  7. C. K. Yuan, K. Zhou, Y. F. Liu, Z. M. Hu, and Z. L. Jiang, Spectral measurements of hypervelocity flow in an expansion tunnel, Acta Mech. Sin. 35, 24 (2019).

    Article  Google Scholar 

  8. G. **ang, C. Wang, H. Teng, Y. Yang, and Z. Jiang, Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges, Acta Mech. Sin. 32, 362 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Zhang, Y. Li, and H. Liu, Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors, Combust. Flame 236, 111763 (2022).

    Article  Google Scholar 

  10. B. Zhang, Y. Li, and H. Liu, Ignition behavior and the onset of quasi-detonation in methane-oxygen using different end wall reflectors, Aerosp. Sci. Tech. 116, 106873 (2021).

    Article  Google Scholar 

  11. C. K. Yuan, and Z. L. Jiang, Experimental investigation of hypersonic flight-duplicated shock tunnel characteristics, Acta Mech. Sin. 37, 422 (2021).

    Article  Google Scholar 

  12. C. Li, K. Kailasanath, and E. S. Oran, Detonation structures behind oblique shocks, Phys. Fluids 6, 1600 (1994).

    Article  MATH  Google Scholar 

  13. C. Viguier, L. F. F. Silva, D. Desbordes, and B. Deshaies, Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures, Symposium (Int.) Combust. 26, 3023 (1996).

    Article  Google Scholar 

  14. D. Desbordes, L. Hamada, and C. Guerraud, Supersonic H2-air combustions behind oblique shock waves, Shock Waves 4, 339 (1995).

    Article  Google Scholar 

  15. M. R. Kamel, C. I. Morris, I. G. Stouklov, and R. K. Hanson, PLIF imaging of hypersonic reactive flow around blunt bodies, Symposium (Int.) Combust. 26, 2909 (1996).

    Article  Google Scholar 

  16. H. H. Teng, and Z. L. Jiang, On the transition pattern of the oblique detonation structure, J. Fluid Mech. 713, 659 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Miao, J. Zhou, S. Liu, and X. Cai, Formation mechanisms and characteristics of transition patterns in oblique detonations, Acta Astronaut. 142, 121 (2017).

    Article  Google Scholar 

  18. Y. Liu, L. Wang, B. **ao, Z. Yan, and C. Wang, Hysteresis phenomenon of the oblique detonation wave, Combust. Flame 192, 170 (2018).

    Article  Google Scholar 

  19. P. Yang, H. Teng, Z. Jiang, and H. D. Ng, Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model, Combust. Flame 193, 246 (2018).

    Article  Google Scholar 

  20. Y. Liu, D. Wu, S. Yao, and J. Wang, Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number, Combust. Sci. Tech. 187, 843 (2015).

    Article  Google Scholar 

  21. H. Teng, Y. Zhang, P. Yang, and Z. Jiang, Oblique detonation wave triggered by a double wedge in hypersonic flow, Chin. J. Aeronauti. 35, 176 (2022).

    Article  Google Scholar 

  22. Y. Gao, H. Li, G. **ang, and S. Peng, Initiation characteristics of oblique detonation waves from a finite wedge under argon dilution, Chin. J. Aeronauti. 34, 81 (2021).

    Article  Google Scholar 

  23. H. Li, J. Li, C. **ong, W. Fan, L. Zhao, and W. Han, Investigation of hot jet on active control of oblique detonation waves, Chin. J. Aeronauti. 33, 861 (2020).

    Article  Google Scholar 

  24. Q. Qin, and X. Zhang, Study on the transition patterns of the oblique detonation wave with varying temperature of the hydrogen-air mixture, Fuel 274, 117827 (2020).

    Article  Google Scholar 

  25. B. Zhang, H. Liu, and Y. Li, The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures, Fuel 253, 305 (2019).

    Article  Google Scholar 

  26. B. Zhang, and H. Liu, Theoretical prediction model and experimental investigation of detonation limits in combustible gaseous mixtures, Fuel 258, 116132 (2019).

    Article  Google Scholar 

  27. Y. Fang, Z. Hu, H. Teng, Z. Jiang, and H. D. Ng, Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures, Aerosp. Sci. Tech. 71, 256 (2017).

    Article  Google Scholar 

  28. N. Chen, S. A. Esfehani, S. Bhattrai, Y. Liu, and H. Tang, Numerical study on effects of equivalence ratio on initiation characteristics of oblique detonation waves, J. Propuls. Technol. 39, 2798 (2018).

    Google Scholar 

  29. Z. Lin, J. Zhou, J. Zhang, and Y. Wang, Investigation of detached detonation induced by oblique shock in premixed supersonic flow, J. Aerosp. Power 1, 56 (2009).

    Google Scholar 

  30. G. **ang, Y. Zhang, C. Zhang, and Y. Kou, Study on initiation mechanism of oblique detonation induced by blunt bump on wedge surface, Fuel 323, 124314 (2022).

    Article  Google Scholar 

  31. Y. Fang, Z. Zhang, and Z. Hu, Effects of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures, Int. J. Hydrogen Energy 44, 23429 (2019).

    Article  Google Scholar 

  32. G. X. **ang, X. Gao, W. J. Tang, X. Z. Jie, and X. Huang, Numerical study on transition structures of oblique detonations with expansion wave from finite-length cowl, Phys. Fluids 32, 056108 (2020).

    Article  Google Scholar 

  33. G. **ang, Y. Zhang, Q. Tu, Y. Gao, X. Huang, and T. Peng, The initiation characteristics of oblique detonation waves induced by a curved surface, Aeros. Sci. Tech. 128, 107743 (2022).

    Article  Google Scholar 

  34. B. Zhang, The influence of wall roughness on detonation limits in hydrogen-oxygen mixture, Combust. Flame 169, 333 (2016).

    Article  Google Scholar 

  35. G. **ang, H. Li, G. Zhang, X. **e, and Y. Zhang, Characteristics of the oblique detonation flow field induced by a complex wave structure, Int. J. Hydrogen Energy 46, 17435 (2021).

    Article  Google Scholar 

  36. Y. Fang, Y. Zhang, X. Deng, and H. Teng, Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures, Phys. Fluids 31, 026108 (2019).

    Article  Google Scholar 

  37. Y. Zhang, Y. Fang, H. D. Ng, and H. Teng, Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution, Combust. Flame 204, 391 (2019).

    Article  Google Scholar 

  38. L. Wang, H. Ma, Z. Shen, B. Xue, Y. Cheng, and Z. Fan, Experimental investigation of methane-oxygen detonation propagation in tubes, Appl. Thermal Eng. 123, 1300 (2017).

    Article  Google Scholar 

  39. Y. Wang, J. Le, C. Wang, and Y. Zheng, A non-premixed rotating detonation engine using ethylene and air, Appl. Thermal Eng. 137, 749 (2018).

    Article  Google Scholar 

  40. B. Zhang, Detonation limits in methane-hydrogen-oxygen mixtures: Dominant effect of induction length, Int. J. Hydrogen Energy 44, 23532 (2019).

    Article  Google Scholar 

  41. B. Zhang, H. Liu, B. Yan, and H. D. Ng, Experimental study of detonation limits in methane-oxygen mixtures: Determining tube scale and initial pressure effects, Fuel 259, 116220 (2020).

    Article  Google Scholar 

  42. B. Zhang, X. Chang, and C. Bai, End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets, Fuel 270, 117485 (2020).

    Article  Google Scholar 

  43. B. Zhang, H. Liu, and B. Yan, Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture, Fuel 236, 975 (2019).

    Article  Google Scholar 

  44. B. Zhang, and H. D. Ng, An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures, Energy 107, 1 (2016).

    Article  Google Scholar 

  45. B. Varatharajan, and F. A. Williams, Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems, Combust. Flame 124, 624 (2001).

    Article  Google Scholar 

  46. G. **ang, Y. Zhang, X. Gao, H. Li, and X. Huang, Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures, Fuel 295, 120615 (2021).

    Article  Google Scholar 

  47. K. H. Kim, C. Kim, and O. H. Rho, Methods for the accurate computations of hypersonic flows, J. Comput. Phys. 174, 38 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Teng, H. D. Ng, and Z. Jiang, Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture, Proc. Combust. Inst. 36, 2735 (2017).

    Article  Google Scholar 

  49. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN-III: A fortran chemical kinetic package for the analysis of gas-phase chemical and plasma knietics, Technical Report (Sandia National Labs, Livermore, 1996).

    Google Scholar 

  50. G. **ang, X. Li, X. Sun, and X. Chen, Investigations on oblique detonations induced by a finite wedge in high altitude, Aerosp. Sci. Tech. 95, 105451 (2018).

    Article  Google Scholar 

  51. S. R. Turns, An Introduction to Combustion: Concepts and Applications (McGraw-Hill Companies, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic research Foundation (Grant No. 2022A1515011565), Foundation of State Key Laboratory of High Temperature Gas Dynamics (Grant No. 2021KF10), and the China Postdoctoral Science Foundation (Grant Nos. 2021M692633 and 2022T150534).

Author information

Authors and Affiliations

Authors

Contributions

Yichen Zhang wrote the first draft of the manuscript, conducted the numerical simulations. Gaoxiang **ang designed the research, conceptualization, review and editing. Qirong Tu, Qiu Wang and Haotian Wei conducted the literature research and helped organize the manuscript.

Corresponding author

Correspondence to Gaoxiang **ang  (项高翔).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., **ang, G., Tu, Q. et al. The initiation characteristics of oblique detonation in acetylene-air mixtures in the finite wedge. Acta Mech. Sin. 39, 122231 (2023). https://doi.org/10.1007/s10409-022-22231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22231-x

Navigation