Log in

A multiaxial elastic potential with error-minimizing approximation to rubberlike elasticity

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This study is concerned with a new, explicit approach by means of which forms of the large strain elastic potential for multiaxial rubberlike elasticity may be obtained based on data for a single deformation mode. As a departure from usual studies, here for the first time errors may be estimated and rendered minimal for all possible deformation modes and, furthermore, failure behavior may be incorporated. Numerical examples presented are in accurate agreement with Treloar’s well-known data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erman, B., Mark, J.E.: Rubberlike elasticity. Annu. Rev. Phys. Chem. 40, 351–374 (1989)

  2. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  3. Beatty, M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Drozdov, A.D., Gottlieb, M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  5. Fried, E.: An elementary molecular-statistical basis for the Mooney and Rivlin–Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubberlike materials-Part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ogden, R.W., Saccomandi, G., Sgura, I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, P.D., van der Giessen, E.: On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  MATH  Google Scholar 

  9. Zuniga, A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907–914 (2006)

    Article  Google Scholar 

  10. Zuniga, A.E., Beatty, M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Engn. Sci. 40, 2265–2294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV: Further developments of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike materials. Proc. R. Soc. Lond. A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  13. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for compressible rubber-like materials. Proc. R. Soc. Lond. A 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  14. Ogden, R.W.: Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338 (1976)

    Article  MATH  Google Scholar 

  15. Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  16. Beatty, M.F.: Topic in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987)

    Article  Google Scholar 

  17. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  18. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  19. Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boyce, M.C.: Direct comparison of the Gent and the Arruda–Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781–785 (1996)

    Article  Google Scholar 

  21. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  22. Gent, A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)

    Article  Google Scholar 

  23. Horgan, C.O., Murphy, J.G.: Limiting chain extensibility constitutive models of Valanis–Landel type. J. Elast. 86, 101–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horgan, C.O., Saccomandi, G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Techn. 79, 1–18 (2006)

    Article  Google Scholar 

  27. Murphy, J.G.: Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids 11, 629–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B 35, 1919–1931 (1997)

    Article  Google Scholar 

  29. **, T.F., Yu, L.D., Yin, Z.N., et al.: Bounded elastic potentials for rubberlike materials with strain-stiffening effects. Z. Angew. Math. Mech. (2014). doi:10.1002/zamm.201400109

  30. Li, H., Zhang, Y.Y., Wang, X.M., et al.: Obtaining multi-axial elastic potentials for rubber-like materials via an explicit, exact approach based on spline interpolation. Acta Mech. Solida Sin. 27, 441–453 (2014)

  31. Wang, X.M., Li, H., Yin, Z.N., et al.: Multiaxial strain energy functions of rubberlike materials: An explicit approach based on polynomial interpolation. Rubber Chem. Technol. 87, 168–183 (2014)

  32. **ao, H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-Part 1: incompressible deformations. Acta. Mech. 223, 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, L.D., **, T.F., Yin, Z.N., et al.: A model for rubberlike elasticity up to failure. Acta Mech. (2014). doi:10.1007/s00707-014-12626

  34. Zhang, Y.Y., Li, H., Wang, X.M., et al.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Continuum Mech. Thermodyn. (2013). doi:10.1007/s00161-013-0297-6

  35. Zhang, Y.Y., Li, H., **ao, H.: Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. (English Edition) 35, 13–24 (2014)

    Article  MathSciNet  Google Scholar 

  36. **ao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. (2014). doi:10.1007/s00707-014-1176-3

  37. Hill, R.: Constitutive inequalities for simple materials. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  Google Scholar 

  38. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1970)

    Article  MATH  Google Scholar 

  39. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Technol. Phys. 9, 215–220 (1928)

    MATH  Google Scholar 

  40. **ao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. **ao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. **ao, H., Bruhns, O.T., Meyers, A.: Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bruhns, O.T., **ao, H., Meyers, A.: Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  44. **ao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  45. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  46. Anand, L.: Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  47. Aron, M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467–478 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Criscione, J.C., Humphrey, J.D., Douglas, A.S., et al.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

  49. Diani, J., Gilormini, P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids. 53, 2579–2596 (2005)

    Article  MATH  Google Scholar 

  50. Fitzjerald, S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)

    Article  Google Scholar 

  51. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain–energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943–950 (2009)

    Article  Google Scholar 

  52. Lurie, A.I.: Nonlinear Theory of Elasticity. Elsevier Science Publishers B.V, Amsterdam (1990)

    MATH  Google Scholar 

  53. **ao, H., Bruhns, O.T., Meyers, A.: Explicit dual stress–strain and strain–stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  54. **ao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study was completed under the support of the start-up fund from the Education Committee of China through Shanghai University (Grant S.15-B002-09-032) and the fund for research innovation from Shanghai University (Grants S.10-0401-12-001) as well as the fund from Natural Science Foundation of China (Grants 11372172, 11472164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng **ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, ZX., Yuan, L., Yin, ZN. et al. A multiaxial elastic potential with error-minimizing approximation to rubberlike elasticity. Acta Mech. Sin. 31, 637–646 (2015). https://doi.org/10.1007/s10409-015-0495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0495-5

Keywords

Navigation