Log in

Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors effectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbulent cavitation under the framework of Navier-Stokes flow computations.

For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream region after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the adverse pressure gradient is strong enough. It represents a barrier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FTLE field has the potential to identify the structures of multiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d e :

Diameter of nozzle exit

d s :

Diameter of cross-section of propulsion system

d t :

Diameter of nozzle throat

E g :

Total energy of gas

E w :

Total energy of water

k eff :

Effective thermal conductivity, k eff = k + k t

k g :

Thermal conductivity of gas

k t :

Turbulent thermal conductivity

k w :

Thermal conductivity of water

m +, m :

Source and sink terms in the cavitation model

p 0 :

Stagnation pressure

p a :

Ambient pressure

p e :

Pressure at nozzle exit

Q :

Vortex definition criterion, Q = 1/2(|Ω|2 − |S|2)

S :

The rate-of strain tensor

t :

Time

t 0 :

Initial time

t :

Reference time scale

t*:

Normalized time scale, t* = t/t

T :

Temperature

T LE :

Finite integration time interval

υ :

Velocity field

υ 0 :

Initial velocity

x :

Particle trajectory

x 0 :

Initial position of the particles

α g :

Volume fraction of gas

α 1 :

Volume fraction of liquid

α w :

Volume fraction of water

Δ :

Cauchy-Green deformation tensor

λ :

Eigenvalue of the Cauchy-Green deformation tensor

µg :

Dynamic viscosity of gas

µm :

Dynamic viscosity of mixture

µw :

Dynamic viscosity of water

ρ g :

Density of gas

ρ 1 :

Density of liquid

ρ m :

Density of mixture

ρ w :

Density of water

σ :

Lyapunov exponent

Ω :

Vorticity tensor

References

  1. Brennen, C. E.: Fundamentals of Multiphase Flow. Cambridge University Press. ISBN 13 978-0-521-84804-6 http://resolver.caltech.edu/CaltechBOOK:2005.001

  2. Tang, J. N., Tseng, C. C., Wang, N. F., et al.: Flow structures of gaseous jets injected into water for underwater propulsion. 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, Paper No. 2011-185 (2011)

  3. Tseng, C. C., Wei, Y., Wang, G., et al.: Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions. Acta Mechanica Sinica 26: 325–353 (2010)

    Article  MathSciNet  Google Scholar 

  4. Shyy, W., Udaykumar, H. S., Rao, M. M., et al.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis: Washington, DC, 1996

    Google Scholar 

  5. Shyy, W.: Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier: Amsterdam, Netherlands, 1994

    Google Scholar 

  6. Francois, M., Shyy, W.: Micro-scale drop dynamics for heat transfer enhancement. Progress in Aerospace Sciences 38: 275–304 (2002)

    Article  Google Scholar 

  7. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method. Part 1-numerical algorithm and buoyancy induced effect. Numerical Heat Transfer, Part B 44: 101–118 (2003)

    Article  Google Scholar 

  8. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method. Part 2 — Drop impact and heat transfer. Numerical Heat Transfer, Part B 44: 119–143 (2003)

    Article  Google Scholar 

  9. Shyy, W.: Multiphase computations using sharp and continuous interface techniques for micro-gravity applications. Computes Rendus Mecanique 332: 375–386 (2004)

    Article  MATH  Google Scholar 

  10. Singh, R., Shyy, W.: Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction. Journal of Computational Physics 224: 150–167 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, S., Doolen, D.: Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30: 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  12. He, X., Chen, S., Zhang, R.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics 152: 642–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shan, X., Chen, H.: Lattice Boltzmann model of simulating flows with multiple phases and components. Physical Review E 47: 1815–1819 (1993)

    Article  Google Scholar 

  14. Ye, T., Mittal, R., Udaykumar, H. S., et al.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 156: 209–240 (1999)

    Article  MATH  Google Scholar 

  15. Ye, T., Shyy, W., Chung, J. C.: A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 174: 781–815 (2001)

    Article  MATH  Google Scholar 

  16. Chen, S., Diemer, K., Doolen, G. D., et al.: Lattice gas automata for flow through porous media. Physica D 47: 72–84 (1991)

    Article  Google Scholar 

  17. Lee, T., Lin, C.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high densityratio. Journal of Computational Physics 206: 16–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chao, J., Mei, R., Singh, R., et al.: A filter-based, mass conserving lattice Blotzmann method for immiscible multiphase flows. International Journal for Numerical Methods in Fluids 66: 622–647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindau, J. W., Venkateswaran, S., Kunz, R. F., et al.: Multiphase computations for underwater propulsive flows. 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida. AIAA 2003-4105(2003)

  20. Holmes, P., Lumley, J. L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, UK (1996)

    Book  MATH  Google Scholar 

  21. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Computer 22(8): 27–36 (1989)

    Article  Google Scholar 

  22. Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Physics of Fluids 13(11): 3365–3395 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lumley, J. L.: The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglow and V. I. Tatarski, eds. Nauka, Moscow (1967)

    Google Scholar 

  24. Lumley, J. L.: Coherent structures in turbulence. In Transition and Turbulence R. E. Meyer, eds. Academic. 215–241 (1981)

  25. Berkooz, G., Homes, P., Lumley, J. L.: The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics 25: 539–575 (1993)

    Article  Google Scholar 

  26. Ahlman, D., Söderlund, F., Jackson, J., et al.: Proper orthogonal decomposition for time-dependent lid-driven cavity flows. Numerical Heat Transfer, Part B 42: 285–306 (2002)

    Article  Google Scholar 

  27. Berkooz, G., Homes, P., Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 25: 539–575 (1993)

    Article  Google Scholar 

  28. Cazemier, W., Verstappen, R. W. C. P., Veldman, A. E. P.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 10: 1685–1699 (1998)

    Article  Google Scholar 

  29. Chao, J., Mei, R., Singh, R., et al.: A filter-based, mass conserving lattice Blotzmann method for immiscible multiphase flows. International Journal for Numerical Methods in Fluids 66: 622–647 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kerschen, G., Golinval, J. C., Vakakis, A. F., et al.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dynamics 41: 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Helman, J. L., Hesselink, L.: Surface representations of twoand three-dimensional fluid flow topology. 1st Conference on Visualization, San Francisco, CA (1990)

  32. Sadlo, F., Peikert, R.: Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology. Topology-Based Methods in Visualization II: 15–29 (2009)

    Article  MathSciNet  Google Scholar 

  33. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147: 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shadden, S. C., Lekien, F., Marsden, J. E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two dimensional aperiodic flows. Physica D 212: 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. O’Farrell, C., Dabiri, J. O.: A Lagrangian approach to identifying vortex pinch-off. Chaos 20: 017513 (2010)

    Article  Google Scholar 

  36. Wilson, M. M., Peng, J., Dabiri, J. O., et al.: Lagrangian coherent structures in low Reynolds number swimming. Journal of Physics: Condensed Matter 21: 204105 (2009)

    Article  Google Scholar 

  37. Peng, J., Dabiri, J. O.: A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity: application to animal swimming measurements. Experiments in Fluids 43: 655–664 (2007)

    Article  Google Scholar 

  38. Dabiri, J. O., Colin, S. P., Costello, J. H., et al.: Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. Journal of Experimental Biology 208: 1257–1265 (2005)

    Article  Google Scholar 

  39. Bartol, I. K., Krueger, P. S., Stewart, W. J., et al.: Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. Journal of Experimental Biology 212: 1506–1518 (2009)

    Article  Google Scholar 

  40. Gharib, M., Rambod, E., Kheradvar, A., et al.: Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. U.S.A. 103: 6305–6308 (2006)

    Article  Google Scholar 

  41. Lipinski, D., Mohseni, K.: Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. The Journal of Experimental Biology 212: 2436–2447 (2009)

    Article  Google Scholar 

  42. Peng, J., Dabiri, J. O.: Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. Journal of Fluid Mechanics 623: 75–84 (2009)

    Article  MATH  Google Scholar 

  43. Lekien, F., Leonard, N.: Dynamically Consistent Lagrangian Coherent Structures. 8th Experimental Chaos Conference. 132–139 (2004)

  44. Shadden, S. C., Dabiri, J. O., Marsden, J. E.: Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of Fluids 18: 047105 (2006)

    Article  MathSciNet  Google Scholar 

  45. Franco, E., Pekarek, D. N., Peng, J., et al.: Geometry of unsteady fluid transport during fluid-structure interactions. Journal of Fluid Mechanics 589: 125–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Green, M. A., Rowley, C. W., Haller, G.: Detection of Lagrangian coherent structures in three-dimensional turbulence. Journal of Fluid Mechanics 572: 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tang, W., Mathur, M., Haller, G., et al.: Lagrangian coherent structures near a subtropical jet stream. Journal of the Atmospheric Sciences 67: 2307–2319 (2010).

    Article  Google Scholar 

  48. Sadlo, F., Peikert, R.: Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. IEEE Transactions on Visualization and Computer Graphics 13(6): 1456–1463 (2007).

    Article  Google Scholar 

  49. Elert, G.: The Chaos Hypertextbook. http://hypertextbook.com/chaos/. (2007)

  50. Shi, H. H., Wang, B. Y., Dai, Z. Q.: Research on the mechanics of underwater supersonic gas jets. Science China 53(3), 527–535 (2010)

    Google Scholar 

  51. Wang, G., Senocak, I., Shyy, W., et al.: Daynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences 37, 551–581 (2001)

    Article  Google Scholar 

  52. Wang, G., Zhang, B., Huang, B., et al.: Unsteady dynamics of cloudy cavitating flows around a hydrofoil. CAV2009, Paper No. 9, Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA (2009)

  53. Wei, Y., Tseng, C. C., Wang, G.: Turbulence and cavitation models for time-dependent turbulent cavitating flows. Acta Mechanica Sinica. Accepted Dec. 2010

  54. Haller, G.: An objective definition of a vortex. Journal of Fluid Mechanics 525, 1–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shi, H. H., Wang, B. Y., Qi, L. X.: A submerged supersonic gas jet. In: Proc. 7th National Congress on Hydrodynamics and 19th National Symposium on Hydrodynamics. Bei**g: Ocean Press, 75–81 (2005) (in Chinese)

    Google Scholar 

  56. Aoki T, Masuda S, Hatano A.: Characteristics of submerged gas jets and a new type bottom blowing tuyere. In: Injection Phenomena in Extraction and Refining. Wraith A. E., ed. Newcastle: Department of Metallurgy and Engineering Materials (University of Newcastle upon Tyne), A1–A36 (1982)

    Google Scholar 

  57. Wu, J. Y., Wang, G. Y., Shyy, W.: Time-dependent turbulent cavutating flow computations with interfacial transport and filter-based models. International Journal for Numerical Methods in Fluids 49(7), 739–761 (2005)

    Article  MATH  Google Scholar 

  58. Tseng, C. C, Shyy, W.: Modeling for isothermal and cryogenic cavitation, Int. J. Heat Mass Transfer 53, 513–525 (2010)

    Article  MATH  Google Scholar 

  59. Utturkar, Y., Wu, J., Wang, G., et al.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Progress in Aerospace Sciences 41, 558–608 (2005)

    Article  Google Scholar 

  60. Senocak, I., Shyy, W.: A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics 176: 363–383 (2002)

    Article  MATH  Google Scholar 

  61. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows, Part-1: Model development and steady-state computations. International Journal of Numerical Methods in Fluids 44: 975 (2004)

    Article  MATH  Google Scholar 

  62. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows, Part-2: Time-dependent computations. International Journal of Numerical Methods in Fluids 44: 997 (2004)

    Article  MATH  Google Scholar 

  63. Merkle, C. L., Feng, J., Buelow, P. E. O.: Computational modeling of sheet cavitation. Proc. 3rd International Symposium on Cavitation, Grenoble, France (1998)

  64. Johansen, S. T., Wu, J. Y., Shyy, W.: Filter based unsteady rans computational. International Journal of Heat and Fluid Flow 25, 10–21 (2005)

    Article  Google Scholar 

  65. Singhal, A. K., Li, H., Athavale, M. M., et al.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617–625 (2002)

    Article  Google Scholar 

  66. Hosangadi A., Ahuja V.: A numerical study of cavitation in cryogenic fluids. Journal of Fluids Engineering 127, 267–281 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chou Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, JN., Tseng, CC. & Wang, NF. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents. Acta Mech Sin 28, 612–624 (2012). https://doi.org/10.1007/s10409-012-0037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0037-3

Keywords

Navigation