Log in

Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, using the fractional Fourier law, we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system. The method of variable separation is used to solve the timefractional heat conduction equation. The Caputo fractional derivative of the order 0 < α ≤ 1 is used. The solution is presented in terms of the Mittag-Leffler functions. Numerical results are illustrated graphically for various values of fractional derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Soliton Fract. 28, 923–929 (2006)

    Article  MATH  Google Scholar 

  3. Chen, W.: A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures. Chaos 16, 023126 (2006)

    Article  Google Scholar 

  4. Tan, W.C., Fu, C.Q., Fu, C.J., et al.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901 (2007)

    Article  Google Scholar 

  5. Kang, J.H., Xu, M.Y.: An exact solution for flow past an accelerated horizontal plate in a rotating fluid with the generalized Oldroyd-B model. Acta Mech. Sin. 25, 463–469 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tan, W.C., Xu, M.Y.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. 20, 471–476 (2004)

    Article  MathSciNet  Google Scholar 

  7. Jiang, X.Y., Xu, M.Y., Qi, H.T.: The fractional diffusion model with an absorption term and modified Fick’s law for nonlocal transport processes. Nonlinear Anal.: RWA 11, 262–269 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, X.Y., Xu, M.Y.: The fractional finite hankel transform and its applications in fractal space. J. Phys. A: Math. Theor. 42, 385201 (2009)

    Article  MathSciNet  Google Scholar 

  9. Metzler, R., Klafter, R.: The random walk’s guide to anoalous diffusion: a fractional dynamics approach. Phy. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Soliton Fract. 34, 87–103 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  14. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Aplications. Gordon and Breach, Amsterdam (1993) (English translation from the Russian edition: nauka i Tekhnika, Minsk (1987))

    Google Scholar 

  15. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  16. Gorenflo, R., Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. eds. Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien, 223–276 (1997)

    Google Scholar 

  17. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hilfer R. ed. Applications of Fractional Calculus in Physics. World Scientific, Singapore, 1–85 (2000)

    Chapter  Google Scholar 

  18. Hanyga, A.: Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 458, 933–957 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hanyga, A.: Multidimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. Lond. A 458, 429–450 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equation. J. Differ. Equ. 199, 211–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moustafa, O.L.: On the Cauchy Problem for some fractional order partial differential equations. Chaos Soliton Fract. 18, 135–140 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. El-Sayed, A.M.A.: Fractional order evolution equation. J. Fractional Calc. 7, 89–100 (1995)

    MATH  MathSciNet  Google Scholar 

  23. El-Sayed, A.M.A.: Fractional order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stress 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  25. Povstenko, Y.Z.: Fundamental solutions to three-dimensional diffusion-wave equation and associated diffusive stresses. Chaos Soliton Fract. 36, 961–972 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Povstenko, Y.Z.: Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation. Int. J. Eng. Sci. 43, 977–991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Povstenko, Y.Z.: Singaling problem for time-fractional diffusion-wave equation in a half-plane. Fract. Calc. Appl. Anal. 11, 329–352 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Povstenko, Y.Z.: Time-fractional radial diffusion in a sphere. Nonlinear Dyn. 53, 55–65 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fourier, J.B.: Therorie Analytique de la Chaleur, Paris, 1882 (English trans. by Freeman, A. Dover Publications, New York, (1999))

  30. Norwood, F.R.: Transient thermal waves in the general theory of heat conduction with finite wave speeds. J.Appl. Mech. 39, 673–676 (1972)

    Article  Google Scholar 

  31. Green, A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elasticity 31, 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Q. Mech. Appl. Math. 61, 523–547 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gasati, G., Li, B.: Heat conduction in one dimensional systems: Fourier law, chaos, and heat control. Nonlinear Dynamics and Fundamental Interactions. Springer, Netherlands. 1–16 (2006)

    Google Scholar 

  34. Lepri, S., Livi, R., Polili, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997)

    Article  Google Scholar 

  35. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solid. Phys. Rev. B 12, 2455–2477 (1975)

    Article  Google Scholar 

  36. Jiang, X.Y., Xu, M.Y.: The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems. Physica A 389, 3368–3374 (2010)

    Article  MathSciNet  Google Scholar 

  37. M. Necati Özisik: Heat Conduction. John Wiley & Sons, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Yun Jiang.

Additional information

The project was supported by the National Natural Science Foundation of China (11072134 and 11102102).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, TH., Jiang, XY. Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta Mech Sin 27, 994–1000 (2011). https://doi.org/10.1007/s10409-011-0533-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0533-x

Keywords

Navigation