Log in

Criblage phytochimique et activité antimicrobienne des extraits de Thymus serpyllum et de Thymus vulgaris du mont de Tessala (Algérie occidentale)

Phytochemical screening and antimicrobial activity of extracts of Thymus serpyllum and Thymus vulgaris from the mount of Tessala (Western Algeria)

  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

Les objectifs assignés à la présente étude sont le criblage phytochimique de plusieurs métabolites secondaires et l’évaluation de l’activité antimicrobienne des extraits éthanoliques, décoctés et infusés de Thymus serpyllum L. et de Thymus vulgaris L. Le criblage phytochimique a permis de mettre en évidence la présence de substances ayant de grandes valeurs thérapeutiques (flavonoïdes, tanins…). L’activité antimicrobienne des extraits des taxons choisis vis-à-vis de trois souches bactériennes (Escherichia coli ATTC 25922, Bacillus cereus ATTC 10876 et Proteus mirabilis ATTC 35659) et de deux souches fongiques (Candida albicans ATTC 10231 et Aspergillus brasiliensis ATTC 16404) montre une remarquable activité antibactérienne et antifongique et surtout vis-à-vis de Candida albicans. Les diamètres d’inhibition enregistrés dépassent souvent ceux induits par les antifongiques commercialisés. Par ailleurs, le potentiel antimicrobien des extraits obtenus des feuilles des deux espèces étudiées varie en fonction du type d’extrait testé et de sa concentration, et du type de la souche.

Abstract

The present study aims at evaluating the phytochemical screening of several secondary metabolites and the antimicrobial activities of the ethanolic, decoction, and infused extracts of Thymus serpyllum L. and Thymus vulgaris L. Phytochemistry screening highlighted the presence of substances of high therapeutic value such as flavonoids and tannins. The antimicrobial activity of the extracts of the taxa selected against three bacterial strains (Escherichia coli ATTC 25922, Bacillus cereus ATTC 10876, and Proteus mirabilis ATTC 35659) and two fungal strains (Candida albicans ATTC 10231 and Aspergillus brasiliensis ATTC 16404) showed a remarkable antibacterial and antifungal activity especially against Candida albicans. The inhibition diameters recorded often exceed those induced by commercialized antifungal. On the other hand, the antimicrobial potential of the extracts of the leaves of the two species studied varied depending on the tested extract and its concentration, and on the type of microbial strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Bérubé-Gagnon J (2006) Isolation et identification de composés antibiotiques des écorces de Picea mariana. Mémoire de l’université du Québec

    Book  Google Scholar 

  2. Arvy MP, Gallouin F (2007) Épices, aromates et condiments. Belin, 412 p

    Google Scholar 

  3. Beauvais M (2000) Promenades: les plantes médicinales. Ed Gründ, Paris, 95 p

    Google Scholar 

  4. Pirbalouti AG, Hashemi M, Ghahfarokhic FT (2013) Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Ind Crop Prod 48:43–8

    Article  Google Scholar 

  5. Hadouche YA (2000) Traitement des affections buccodentaires par les plantes médicinales marocaines. Thèse en médecine dentaire, faculté de médecine dentaire, Rabat

    Google Scholar 

  6. Zeggwagh AA, Lahlou Y, Bousliman Y (2013) Survey of toxicological aspects of herbal medicine used by a herbalist in Fes, Morocco. Pan Afr Med J 14:125

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fernandez M (2003) Quelques plantes médicinales et leurs fonctions. Ed Aenigma, 63 p

    Google Scholar 

  8. Vanaclocha B, Cañigueral S (2003) Fitoterapia: Vademecum de Prescripción. 4th Ed Masson, Barcelona, 1092 p

    Google Scholar 

  9. Hmamouchi M (1999) Les plantes médicinales et aromatiques marocaines. Ed Fedala, Mohammedia

    Google Scholar 

  10. Viuda-Martos M, Navajas YR, Zapata ES, et al (2010) Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Frag J 25:13–9

    Article  CAS  Google Scholar 

  11. Kon K, Rai M (2012) Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils. Bioscience 4:50–6

    Google Scholar 

  12. Guessous H (2013) La phytothérapie dans le traitement des parodontopathies au Maroc: « enquête épidémiologique ». Thèse en médecine dentaire, faculté de médecine dentaire, Rabat

    Google Scholar 

  13. Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales. Ed Centre national de la recherche scientifique, 1170 p

    Google Scholar 

  14. Sqalli H, El Ouarti A, Ennabili A, et al (2007) Évaluation de l’effet antimycobactérien de plantes du Centre-Nord du Maroc. Bull Soc Pharm Bordeaux 146:271–88

    Google Scholar 

  15. Diallo A (2005) Étude de la phytochimie et des activités biologiques de Syzygium guineense Willd. (Myrtaceae). Thèse de pharmacie, Bamako 98 p

    Google Scholar 

  16. Dohou N, Yamni K, Tahrouch S, et al (2003) Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Soc Pharm Bordeaux 142:61–78

    Google Scholar 

  17. Fong HHS, Tin WAM, Farnsworth N (1977) Phytochemical screening review. Chicago: University of Illinois, pp 73–126

    Google Scholar 

  18. Niare A (2005) Étude de la phytochimie et des activités pharmacologiques de Syzygium guineense Willd. (Myrtaceae). Thèse de doctorat, université de Bamako, 114 p

    Google Scholar 

  19. Senhadji O, Faid M, Elyachioui M, et al (2005) Étude de l’activité antifongique de divers extraits de cannelle. J Mycol Med 15:220–9

    Article  Google Scholar 

  20. Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 70:343–9

    Article  CAS  PubMed  Google Scholar 

  21. Bssaibis F, Gmira N, Meziane M (2009) Activité antibactérienne de Dittrichia viscosa L. Rev Microbiol Ind San Environn 3:44–55

    Google Scholar 

  22. Markham KR (1982) Techniques of flavonoid identification. Academic Press, London 133 p

    Google Scholar 

  23. Bruneton J (1999) Pharmacognosie, phytochimie, plantes médicinales. 3e Ed Paris, Technique et Documentation, 1120 p

    Google Scholar 

  24. Narayana KR, Reddy MS, Chaluvadi MR, et al (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2–16

    CAS  Google Scholar 

  25. Lin JK, Weng MS (2006) Flavonoids as nutraceuticals. In Grotewold E (Ed) The science of flavonoids. Springer Edition, New York, pp 213–38

    Chapter  Google Scholar 

  26. Sofowra A (1993) Medicinal plants and traditional medicine in Africa. 2e Ed, Spectrum Books Ltd, Ibadan, Nigeria

    Google Scholar 

  27. Haraguchi H, Saito T, Ishikawa H, et al (1996) Antiperoxidative components in Thymus vulgaris. Planta Med 62:217–21

    Article  CAS  PubMed  Google Scholar 

  28. Ismaili H, Tortora S, Sosa S, et al (2001) Topical anti-inflammatory activity of Thymus willdenowii. J Pharm Pharmacol 53:1645–52

    Article  CAS  PubMed  Google Scholar 

  29. Kholkhal F, Lazouni HA, Bendahou M, et al (2013) Étude phytochimique et évaluation de l’activité antioxydante de Thymus ciliatus ssp. coloratus. Afr Sci 9:151–8

    Google Scholar 

  30. Horikawa M, Nora T, Kamei Y (1999) In vitro antimethicillin resistant Staphylococcus aureus activity found in extract of marine algae in digenous to the costline of Japan. J Antibiot 52:186–9

    Article  CAS  PubMed  Google Scholar 

  31. Woo JH, Kitamura E, Myouga H, et al (2002) An antifungal protein from the marine bacterium Streptomyces sp. Strain Ap77 in specific for Pytiumporphyrae, a causative agent of read disease in Porphyra spp. Appl Environ Microb 68:2665–75

    Google Scholar 

  32. Pechère JC, Vladoianu IR (1992) Development of resistance during ceftazidime and cefepime therapy in a murine peritonitis model. J Antimicrob Chemother 29:563–73

    Article  PubMed  Google Scholar 

  33. Cometta A, Baumgartner JD, Lew D, et al (1994) Prospective randomized comparison of imipenem monotherapy with imipenem plus neltilmicin for treatment of severe infections in nonneutropenic patients. Antimicrob Agents Chemother 38:1309–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Auajjar N, Attarassi B, Elhaloui NE, et al (2006) Multirésistance aux antibiotiques de Pseudomonas aeruginosa, Pseudomonas fluorescens et Staphylococcus aureus et survie sur divers tissus hospitaliers. Bull Soc Pharm Bordeaux 145:61–76

    Google Scholar 

  35. Coonrod JD, Leadley PJ, Eickhoff TC (1971) Antibiotic susceptibility of Bacillus species. J Infect Dis 123:102–5

    Article  CAS  PubMed  Google Scholar 

  36. Mols M, De Been M, Zwietering MH, et al (2007) Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATTC 10987 interlinked with comparative genomics. Environ Microbiol 9:2933–44

    Article  CAS  PubMed  Google Scholar 

  37. White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–7

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Franz R, Kelly SL, Lamb DC, et al (1998) Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42:3065–72

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-ribot JL, McAtee RK, Perea S, et al (1999) Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virusinfected patients. Antimicrob Agents Chemother 43:1621–30

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryder NS, Wagner S, Leitner I (1998) In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother 42:1057–61

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rathod VS, Raut JS, Karuppayil SM (2012) In vitro antifungal susceptibility reveals occurrence of azole resistance among clinical isolates of Candida albicans. Asian J Pharma Clin Res 5:170–3

    Google Scholar 

  42. Mendiratta DK, Rawat V, Thamke D, et al (2006) Candida colonization in preterm babies admitted to neonatal intensive care unit in the rural setting. Indian J Med Microbiol 24: 263–7

    Article  CAS  PubMed  Google Scholar 

  43. Szigeti G, Sedaghati E, Mahmoudabadi AZ, et al (2012) Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses 55:333–8

    Article  PubMed  Google Scholar 

  44. Ellis D (2002) Amphotericin B: spectrum and resistance. J Antimicrob Chemother 49:7–10

    Article  CAS  PubMed  Google Scholar 

  45. Nikolić M, Glamoćlija J, Ferreira ICFR, et al (2014) Chemical composition, antimicrobial, antioxidant and antitumoractivity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind Crop Prod 52:183–90

    Article  Google Scholar 

  46. Akpan A, Morgan R (2002) Oral candidiasis. Postgrad Med J 78:455–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdul BA, Hassan AM, Hassan AS (2012) In vitro antimicrobial activity of Thymus vulgaris, Origanum vulgare and Rosmarinus officinalis against dental caries pathogens. Haitham J Pure Appl Sci 25:1–7

    Google Scholar 

  48. Oussalah M, Caillet S, Saucier L, et al (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18:414–20

    Article  CAS  Google Scholar 

  49. Al-Bayati FA (2008) Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol 116:403–6

    Article  CAS  PubMed  Google Scholar 

  50. Van Vuuren SF, Suliman S, Viljoen AM (2009) The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 48:440–6

    Article  PubMed  Google Scholar 

  51. Martins N, Barros L, Santos-Buelga C, et al (2015) Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterization. Food Chem 167:131–7

    Article  CAS  PubMed  Google Scholar 

  52. Dababneh BF (2007) Antimicrobial activity and genetic diversity of Thymus species on pathogenic microorganisms. J Food Agric Environ 5: 158–62

    Google Scholar 

  53. Sagdic O, Ozcan M (2003) Antibacterial activity of Turkish spice hydrosols. Food Control Elsevier 14:141–3

    Article  CAS  Google Scholar 

  54. Moreira MR, Ponce AG, Del Valle CE, et al (2005) Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Sci Technol 38(5):565–70

    Article  CAS  Google Scholar 

  55. Celiktas OY, Hames Kocabas EE, Bedir E, et al (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis L., depending on location and seasonal variations. Food Chem 100:553–9

    Article  CAS  Google Scholar 

  56. Turkmen N, Velioglu YS, Sari F, et al (2007) Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules 12:484–96

    Article  CAS  PubMed  Google Scholar 

  57. Loziene K, Venskutonis PR, Sipailiené A, et al (2007) Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem 103:546–59

    Article  CAS  Google Scholar 

  58. Ulukanli Z, Akkaya A (2011) Antibacterial activities of Marrubium catariifolium and Phlomis pungens Var. Hirta grown wild in eastern Anatolia, Turkey. Int J Agric Biol 13:105–9

    Google Scholar 

  59. Huang LQ, Guo LP (2007) Effects of accumulation of secondary metabolites on formation of genuine medicinal materials under environmental press. J Clin Pharmacol 32:277–80

    CAS  Google Scholar 

  60. Guo L, Wang S, Zhang J, et al (2013) Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geoherblism. Life Sci 56:1047–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamert.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamert, A., Latreche, A. & Aouad, L. Criblage phytochimique et activité antimicrobienne des extraits de Thymus serpyllum et de Thymus vulgaris du mont de Tessala (Algérie occidentale). Phytothérapie 15, 384–394 (2017). https://doi.org/10.1007/s10298-017-1132-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-017-1132-1

Mots clés

Keywords

Navigation