Log in

High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The methylotrophic yeast Pichia pastoris has recently been engineered to express therapeutic glycoproteins with uniform human N-glycans at high titers. In contrast to the current art where producing therapeutic proteins in mammalian cell lines yields a final product with heterogeneous N-glycans, proteins expressed in glycoengineered P. pastoris can be designed to carry a specific, preselected glycoform. However, significant variability exists in fermentation performance between genotypically similar clones with respect to cell fitness, secreted protein titer, and glycan homogeneity. Here, we describe a novel, multidimensional screening process that combines high and medium throughput tools to identify cell lines producing monoclonal antibodies (mAbs). These cell lines must satisfy multiple selection criteria (high titer, uniform N-glycans and cell robustness) and be compatible with our large-scale production platform process. Using this selection process, we were able to isolate a mAb-expressing strain yielding a titer (after protein A purification) in excess of 1 g/l in 0.5-l bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maggon K (2007) Monoclonal antibody “gold rush”. Curr Med Chem 14:1978–1987

    Article  CAS  PubMed  Google Scholar 

  2. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  CAS  PubMed  Google Scholar 

  3. Sommerfeld S, Strube J (2005) Challenges in biotechnology production – generic processes and process optimization for monoclonal antibodies. Chem Eng Process 44:1123–1137

    Article  CAS  Google Scholar 

  4. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    Article  CAS  PubMed  Google Scholar 

  5. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414

    Article  CAS  PubMed  Google Scholar 

  6. Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186

    Article  CAS  PubMed  Google Scholar 

  7. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  CAS  PubMed  Google Scholar 

  8. Cereghino GP, Cregg JM (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol 10:422–427

    Article  CAS  PubMed  Google Scholar 

  9. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  PubMed  Google Scholar 

  10. Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review. Gene 190:87–97

    Article  CAS  PubMed  Google Scholar 

  11. Kingsman AJ, Stanway C, Kingsman SM (1987) The expression of homologous and heterologous genes in yeast. Antonie Van Leeuwenhoek 53:325–333

    Article  CAS  PubMed  Google Scholar 

  12. Swinkels BW, van Ooyen AJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187–201

    Article  PubMed  Google Scholar 

  13. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  14. Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30(Pt 3):193–200

    CAS  PubMed  Google Scholar 

  15. Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766

    Article  CAS  PubMed  Google Scholar 

  16. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski W, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz P, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  CAS  PubMed  Google Scholar 

  20. Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94:353–361

    Article  CAS  PubMed  Google Scholar 

  21. Holz C, Hesse O, Bolotina N, Stahl U, Lang C (2002) A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif 25:372–378

    Article  CAS  PubMed  Google Scholar 

  22. Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99:51–62

    Article  CAS  PubMed  Google Scholar 

  23. Bottner M, Lang C (2004) High-throughput expression in microplate format in Pichia pastoris. Methods Mol Biol 267:277–286

    PubMed  Google Scholar 

  24. Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A (2004) Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res 5:179–189

    Article  CAS  PubMed  Google Scholar 

  25. Frachon E, Bondet V, Munier-Lehmann H, Bellalou J (2006) Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols. Appl Environ Microbiol 72:5225–5231

    Article  CAS  PubMed  Google Scholar 

  26. Betts JI, Doig SD, Baganz F (2006) Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol Prog 22:681–688

    Article  CAS  PubMed  Google Scholar 

  27. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523

    Article  CAS  PubMed  Google Scholar 

  28. Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John GT, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioprocess Biosyst Eng 28:109–119

    Article  CAS  PubMed  Google Scholar 

  29. Isett K, George H, Herber W, Amanullah A (2007) 24 well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnol Bioeng 98(5):1017–1028

    Article  CAS  PubMed  Google Scholar 

  30. Aboka FO, Yang H, de Jonge LP, Kerste R, van Winden WA, van Gulik WM, Hoogendijk R, Oudshoorn A, Heijnen JJ (2006) Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 95:1032–1042

    Article  CAS  PubMed  Google Scholar 

  31. Szita N, Boccazzi P, Zhang Z, Boyle P, Sinskey AJ, Jensen KF (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819–826

    Article  CAS  PubMed  Google Scholar 

  32. Potgieter TI, Cukan M, Houston-Cummings NR, Drummond JE, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey T, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325

    Article  CAS  PubMed  Google Scholar 

  33. Charlton HR, Relton JM, Slater NK (1999) Characterization of a generic monoclonal antibody harvesting system for adsorption of DNA by depth filters and various membranes. Bioseparation 8:281–291

    Article  CAS  PubMed  Google Scholar 

  34. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (NY) 9:455–460

    Article  CAS  Google Scholar 

  35. Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (NY) 12:181–184

    Article  CAS  Google Scholar 

  36. Sunga AJ, Tolstorukov I, Cregg J (2008) Posttranslational vector amplification in the yeast Pichia pastoris. FEMS Yeast Res 8:870–876

    Article  CAS  PubMed  Google Scholar 

  37. Koy JF, Pleninger P, Wall L, Pramanik A, Martinez M, Moore CW (1995) Genetic changes and bioassays in bleomycin- and phleomycin-treated cells, and their relationship to chromosomal breaks. Mutat Res 336:19–27

    CAS  PubMed  Google Scholar 

  38. Moore CW (1989) Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Cancer Res 49:6935–6940

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance A. Stadheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, G.C., Kull, A.R., Sharkey, N.S. et al. High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biotechnol 37, 961–971 (2010). https://doi.org/10.1007/s10295-010-0746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0746-1

Keywords

Navigation