Log in

Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We report on the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) limb-viewing observations of GPS L-band scintillations since mid-2006 and propose to study global F-layer irregularity morphology. The FS3/COSMIC has generally performed more than 1000 ionospheric radio occultation (RO) observations per day. We reprocess 1-Hz amplitude data and obtain complete limb-viewing profiles of the undersampling (sampling frequency lower than Fresnel frequency) S4 scintillation index from about 80% of the RO observations. There are a few percent of FS3/COSMIC RO observations having greater than 0.09 undersampling S4max values on average. However, seven identified areas, Central Pacific Area (−20° to 20° dip latitude, 160°E–130°W), South American Area (−20° to 20° dip latitude, 100°W–30°W), African Area (−20° to 20° dip latitude, 30°W–50°E), European Area (30°–55°N, 0°–55°E), Japan Sea Area (35°–55°N, 120°–150°E), Arctic Area (>65° dip latitude), and Antarctic Area (<−65° dip latitude), have been designated to have a much higher percentage of strong limb-viewing L-band scintillations. During the years in most of the last sunspot cycle from mid-2006 to the end 2014, the scintillation climatology, namely, its variations with each identified area, season, local time, magnetic activity, and solar activity, have been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70:360–378. doi:10.1109/PROC.1982.12314

    Article  Google Scholar 

  • Basu S, Basu Sa (1985) Equatorial scintillations: advances since ISEA-6. J Atmos Terr Phys 47:753–768. doi:10.1016/0021-9169(85)90052-2

    Article  Google Scholar 

  • Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci 23(3):363–378

    Article  Google Scholar 

  • Basu S et al (1996) Scintillations, plasma drifts, and neutral winds in equatorial ionosphere after sunset. J Geophys Res 101:26795–26809. doi:10.1029/96JA00760

    Article  Google Scholar 

  • Basu S, Groves KM, Basu S, Sultan PJ (2002) Specification and forecasting of scintillations in communication/navigation links: current status and future plans. J Atmos Sol Terr Phys 64:1745–1754. doi:10.1016/S1364-6826(02)00124-4

    Article  Google Scholar 

  • Brahmanandam PS, Uma G, Liu JY, Chu YH, Latha Devi NSMP, Kakinami Y (2012) Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year. J Geophys Res 117:A09322. doi:10.1029/2012JA017966

    Article  Google Scholar 

  • Carter BA, Zhang K, Norman R, Kumar VV, Kumar S (2013) On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements. J Geophys Res 118:892–904. doi:10.1002/jgra.50089

    Article  Google Scholar 

  • Coker C, Hunsucker R, Lott G (1995) Detection of auroral activity using GPS satellites. Geophys Res Lett 22:3259–3262. doi:10.1029/95GL03091

    Article  Google Scholar 

  • Dymond KF (2012) Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci 47:RS0L18. doi:10.1029/2011RS004931

    Article  Google Scholar 

  • Evans JV, Holt JM, Wand RH (1983) A differential-Doppler study of travelling ionospheric disturbances from Millstone Hill. Radio Sci 18:435–451. doi:10.1029/RS018i003p00435

    Article  Google Scholar 

  • Gorbunov ME, Gurvich AS, Shmakov AV (2002) Back-propagation and radio-holographic methods for investigation of sporadic ionospheric E-layers from Microlab-1 data. J Remote Sens, Int. doi:10.1080/01431160010030091

    Google Scholar 

  • Hajj GA, Lee LC, Pi X, Romans LJ, Schreiner WS, Straus PR, Wang C (2000) COSMIC GPS ionospheric sensing and space weather. Terr Atmos Ocean Sci 11(1):235–272

    Article  Google Scholar 

  • Hei MA, Heelis RA, McClure JP (2005) Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. J Geophys Res 110:A12315. doi:10.1029/2005JA011153

    Article  Google Scholar 

  • Hocke K, Tsuda T (2001) Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys Res Lett 28(14):2815–2818. doi:10.1029/2001GL013076

    Article  Google Scholar 

  • Ishimaru A (1978) Wave propagation and scattering in random media. Academic Press, New York

    Google Scholar 

  • Kelley MC (2009) The earth ionosphere: plasma physics and electrodynamics, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Ko CP, Yeh HC (2010) COSMIC/FORMOSAT-3 observations of equatorial F region irregularities in the SAA longitude sector. J Geophys Res 115:A11309. doi:10.1029/2010JA015618

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465. doi:10.1029/97JD01569

    Article  Google Scholar 

  • Makela JJ, Kelley MC, Sojka JJ, Pi X, Mannucci AJ (2001) GPS normalization of and preliminary modeling results of total electron content during a midlatitude space weather event. Radio Sci 36(2):351–361. doi:10.1029/1999RS002427

    Article  Google Scholar 

  • Ott E (1978) Theory of Rayleigh–Taylor bubbles in the equatorial ionosphere. J Geophys Res 83(A5):2066–2070. doi:10.1029/JA083iA05p02066

    Article  Google Scholar 

  • Rino CL (2011) The theory of scintillation with applications in remote sensing. Wiley, Hoboken

    Book  Google Scholar 

  • Rocken C, Kuo Y-H, Schreiner W, Hunt D, Sokolovskiy S, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11(1):21–52

    Article  Google Scholar 

  • Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966. doi:10.1029/1999RS900034

    Article  Google Scholar 

  • Singleton DG (1974) Power spectra of ionospheric scintillations. J Atmos Terr Phys 36:113–133. doi:10.1016/0021-9169(74)90071-3

    Article  Google Scholar 

  • Sokolovskiy SV (2000) Inversions of radio occultation amplitude data. Radio Sci 35(1):97–105. doi:10.1029/1999RS002203

    Article  Google Scholar 

  • Su S-Y, Chung-Lung W, Liu C-H (2014) Correlation between the global occurrences of ionospheric irregularities and deep atmospheric convective clouds in the intertropical convergence zone (ITCZ). Earth Planets Space 66:134–141. doi:10.1186/1880-5981-66-134

    Article  Google Scholar 

  • Sultan PJ (1996) Linear theory and modelling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread-F. J Geophys Res 101(26):875. doi:10.1186/1880-5981-66-134

    Google Scholar 

  • Syndergaard S (2006) COSMIC S4 data, from the website: http://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/s4_description.pdf

  • Tsai L-C, Kevin Chang K, Liu CH (2011) GPS radio occultation measurements on ionospheric electron density from low Earth orbit. J Geodesy. doi:10.1007/s00190-011-0476-9

    Google Scholar 

  • Uma G, Liu JY, Chen SP, Sun YY, Brahmanandam PS, Lin CH (2012) A comparison of the equatorial spread F derived by the International Reference Ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007–2009. Earth Planets Space 64:467–471. doi:10.5047/eps.2011.10.014

    Article  Google Scholar 

  • Vorob’ev VV, Gurvich AS, Kan V, Sokolovskiy SV, Fedorova OV, Shmakov AV (1999) Structure of the ionosphere based on radio occultation data from GPS “Microlab-1” satellites: preliminary results. Earth Obs Remote Sens 15:609–622

    Google Scholar 

  • Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Melbourne W, Rocken C, Schreiner W, Sokolovsky S, Solheim F, Zou X, Anthes AR, Businger S, Trenberth K (1996) GPS soundings of the atmosphere from low earth orbit: preliminary results. Bull Am Meteor Soc 77:19–40

    Article  Google Scholar 

  • Weber EJ, Klobuchar JA, Buchau J, Carlson HC Jr, Livingston RC, de la Beaujardiere O, McCready M, Moore JG, Bishop GJ (1986) Polar cap F-layer patches: structure and dynamics. J Geophys Res 91:12121–12129. doi:10.1029/JA091iA11p12121

    Article  Google Scholar 

  • Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70:324–360. doi:10.1109/PROC.1982.12313

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by MOST 104-2111-E-008-027-MY3 from the Ministry of Science and Technology, Taiwan, R.O.C., and in part by a grant from the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force Office of Scientific Research (AFOSR) (AOARD-13-4126). The authors would also like to thank UCAR’s CDAAC and NSPO Satellite Operations Control Center (SOCC) for providing FS3/COSMIC satellites data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lung-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, LC., Su, SY. & Liu, CH. Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data. GPS Solut 21, 1037–1048 (2017). https://doi.org/10.1007/s10291-016-0591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0591-4

Keywords

Navigation