Log in

Application of a Modified Combinational Approach to Brain Tumor Detection in MR Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

For many years, brain tumor detection has been one of the most essential and competitive issues for medical researchers. Many methods have been developed to detect normal and abnormal tissues in Magnetic Resonance (MR) images. In this work, we present a novel algorithm based on iterative Co-Clustering and K-Means (ICCK). After image pre-processing and enhancement, this algorithm recognizes the part of the image that contains the tumor and eliminates the unused parts using a modification of the Co-Clustering method. Finally, the K-Means clustering method is adopted to detect the tumor area. The Co-Clustering methods cannot be used directly for the detection of brain tumors because they manipulate the image matrix for the purpose of block clustering. Furthermore, they are incapable of detecting the tumor area correctly and accurately. Such issues are addressed by our proposed methodology. The latent block model (LBM) is applied as the Co-Clustering method in this work. We evaluate the performance of our method on the images that were collected from the BraTS2019 dataset. The sensitivity, specificity, accuracy, and dice similarity coefficient values for our method are 82.41%, 99.74%, 99.28%, and 84.87%, respectively, which shows that the proposed method outperforms the existing methods in the literature. Moreover, it performs much better on complex images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Y. Borole, S. S. Nimbhore, D. S. S. Kawthekar, Image processing techniques for brain tumor detection: A review, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) 4 (5) (2015) 2.

  2. N. B. Bahadure, A. K. Ray, H. P. Thethi, Image analysis for mri based brain tumor detection and feature extraction using biologically inspired bwt and svm, International journal of biomedical imaging 2017 (2017).

  3. M. S. Alam, M. M. Rahman, M. A. Hossain, M. K. Islam, K. M. Ahmed, K. T. Ahmed, B. C. Singh, M. S. Miah, Automatic human brain tumor detection in mri image using template-based k means and improved fuzzy c means clustering algorithm, Big Data and Cognitive Computing 3 (2) (2019) 27.

    Article  Google Scholar 

  4. K.-P. Wong, Medical image segmentation: methods and applications in functional imaging, in: Handbook of biomedical image analysis, Springer, 2005, pp. 111–182.

  5. R. G. Selkar, M. Thakare, Brain tumor detection and segmentation by using thresholding and watershed algorithm, International Journal of Advanced Information and Communication Technology 1 (3) (2014) 321–4.

    Google Scholar 

  6. S. Masood, M. Sharif, A. Masood, M. Yasmin, M. Raza, A survey on medical image segmentation, Current Medical Imaging 11 (1) (2015) 3–14.

    Article  Google Scholar 

  7. A. A. Abdulla, Efficient computer-aided diagnosis technique for leukaemia cancer detection, IET Image Processing 14 (17) (2020) 4435–4440.

    Article  Google Scholar 

  8. I. M. Wani, S. Arora, Computer-aided diagnosis systems for osteoporosis detection: A comprehensive survey, Medical & biological engineering & computing (2020) 1–45.

  9. A. R. Mathew, P. B. Anto, Tumor detection and classification of mri brain image using wavelet transform and svm, in: 2017 International Conference on Signal Processing and Communication (ICSPC), IEEE, 2017, pp. 75–78.

  10. N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics 9 (1) (1979) 62–66.

    Article  Google Scholar 

  11. M. Sujan, N. Alam, S. A. Noman, M. J. Islam, A segmentation based automated system for brain tumor detection, International Journal of Computer Applications 153 (10) (2016) 41–49.

    Article  Google Scholar 

  12. U. Ilhan, A. Ilhan, Brain tumor segmentation based on a new threshold approach, Procedia computer science 120 (2017) 580–587.

    Article  Google Scholar 

  13. S. Taheri, S. H. Ong, V. Chong, Level-set segmentation of brain tumors using a threshold-based speed function, Image and Vision Computing 28 (1) (2010) 26–37.

    Article  Google Scholar 

  14. R. Adams, L. Bischof, Seeded region growing, IEEE Transactions on pattern analysis and machine intelligence 16 (6) (1994) 641–647.

    Article  Google Scholar 

  15. D. Selvaraj, R. Dhanasekaran, Mri brain image segmentation techniques-a review, Indian Journal of Computer Science and Engineering (IJCSE) 4 (5) (2013) 0976–5166.

    Google Scholar 

  16. T. Węgliński, A. Fabijańska, Brain tumor segmentation from mri data sets using region growing approach, in: Perspective Technologies and Methods in MEMS Design, IEEE, 2011, pp. 185–188.

  17. A. Kavitha, C. Chellamuthu, K. Rupa, An efficient approach for brain tumour detection based on modified region growing and neural network in mri images, in: 2012 international conference on Computing, Electronics and Electrical Technologies (ICCEET), IEEE, 2012, pp. 1087–1095.

  18. I. S. Bajwa, M. N. Asghar, M. A. Naeem, Learning-based improved seeded region growing algorithm for brain tumor identification: Improved seeded region growing algorithm for brain tumor identification, Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences 54 (2) (2017) 127–133.

  19. T. Kalaiselvi, P. Kumarashankar, P. Sriramakrishnan, Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique, Journal of Digital Imaging 33 (2) (2020) 465–479.

    Article  CAS  PubMed  Google Scholar 

  20. A. Wadhwa, A. Bhardwaj, V. S. Verma, A review on brain tumor segmentation of mri images, Magnetic resonance imaging 61 (2019) 247–259.

    Article  PubMed  Google Scholar 

  21. X. **e, A k-nearest neighbor technique for brain tumor segmentation using minkowski distance, Journal of Medical Imaging and Health Informatics 8 (2) (2018) 180–185.

    Article  Google Scholar 

  22. V. Wasule, P. Sonar, Classification of brain mri using svm and knn classifier, in: 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), IEEE, 2017, pp. 218–223.

  23. J. Zhang, K.-K. Ma, M.-H. Er, V. Chong, Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine, in: International Workshop on Advanced Image Technology (IWAIT’04), 2004, pp. 207–211.

  24. R. Ayachi, N. B. Amor, Brain tumor segmentation using support vector machines, in: European conference on symbolic and quantitative approaches to reasoning and uncertainty, Springer, 2009, pp. 736–747.

  25. K. Sharma, A. Kaur, S. Gujral, A review on various brain tumor detection techniques in brain mri images, IOSR Journal of Engineering (IOSRJEN) 4 (05) (2014) 06–12.

    Article  Google Scholar 

  26. M. Ozkan, B. M. Dawant, R. J. Maciunas, Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study, IEEE transactions on Medical Imaging 12 (3) (1993) 534–544.

    Article  CAS  PubMed  Google Scholar 

  27. S. Pereira, A. Pinto, V. Alves, C. A. Silva, Brain tumor segmentation using convolutional neural networks in mri images, IEEE transactions on medical imaging 35 (5) (2016) 1240–1251.

    Article  PubMed  Google Scholar 

  28. M. Sharma, G. Purohit, S. Mukherjee, Information retrieves from brain mri images for tumor detection using hybrid technique k-means and artificial neural network (kmann), in: Networking communication and data knowledge engineering, Springer, 2018, pp. 145–157.

  29. X. Zhou, X. Li, K. Hu, Y. Zhang, Z. Chen, X. Gao, Erv-net: An efficient 3d residual neural network for brain tumor segmentation, Expert Systems with Applications 170 (2021) 114566.

  30. J. D. Rudie, J. Duda, M. T. Duong, P.-H. Chen, L. **e, R. Kurtz, J. B. Ware, J. Choi, R. R. Mattay, E. J. Botzolakis, et al., Brain mri deep learning and bayesian inference system augments radiology resident performance, Journal of Digital Imaging 34 (4) (2021) 1049–1058.

    Article  PubMed  PubMed Central  Google Scholar 

  31. J. Vijay, J. Subhashini, An efficient brain tumor detection methodology using k-means clustering algoriftnn, in: 2013 International Conference on Communication and Signal Processing, IEEE, 2013, pp. 653–657.

  32. J. C. Bezdek, L. Hall, L. Clarke, Review of mr image segmentation techniques using pattern recognition, Medical physics 20 (4) (1993) 1033–1048.

    Article  CAS  PubMed  Google Scholar 

  33. A. Bhide, P. Patil, S. Dhande, Brain segmentation using fuzzy c means clustering to detect tumour region, International Journal of Advanced Research in Computer Science and Electronics Engineering 1 (2) (2012) 85–90.

    Google Scholar 

  34. R. B. Vallabhaneni, V. Rajesh, Brain tumour detection using mean shift clustering and glcm features with edge adaptive total variation denoising technique, Alexandria engineering journal 57 (4) (2018) 2387–2392.

    Article  Google Scholar 

  35. I. S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, 2001, pp. 269–274.

  36. Y. Kluger, R. Basri, J. T. Chang, M. Gerstein, Spectral biclustering of microarray data: coclustering genes and conditions, Genome research 13 (4) (2003) 703–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Eren, M. Deveci, O. Küçüktunç, Ü. V. Çatalyürek, A comparative analysis of biclustering algorithms for gene expression data, Briefings in bioinformatics 14 (3) (2013) 279–292.

    Article  CAS  PubMed  Google Scholar 

  38. G. Govaert, M. Nadif, Clustering with block mixture models, Pattern Recognition 36 (2) (2003) 463–473.

    Article  Google Scholar 

  39. P. S. Bhatia, S. Iovleff, G. Govaert, blockcluster: An r package for model-based co-clustering, Journal of Statistical Software 76 (1) (2017) 1–24.

    Google Scholar 

  40. A. Singh, A. Yadav, A. Rana, K-means with three different distance metrics, International Journal of Computer Applications 67 (10) (2013).

  41. M. K. Arzoo, A. Prof, K. Rathod, K-means algorithm with different distance metrics in spatial data mining with uses of netbeans ide 8. 2, Int. Res. J. Eng. Technol 4 (4) (2017) 2363–2368.

  42. M. E. Celebi, H. A. Kingravi, P. A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert systems with applications 40 (1) (2013) 200–210.

    Article  Google Scholar 

  43. D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Tech. rep., Stanford (2006).

    Google Scholar 

  44. S. Lloyd, Least squares quantization in pcm, IEEE transactions on information theory 28 (2) (1982) 129–137.

    Article  Google Scholar 

  45. J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, Oakland, CA, USA, 1967, pp. 281–297.

  46. J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the royal statistical society. series c (applied statistics) 28 (1) (1979) 100–108.

  47. J. Swiebocka-Wiek, Skull strip** for mri images using morphological operators, in: IFIP International Conference on Computer Information Systems and Industrial Management, Springer, 2016, pp. 172–182.

  48. A. H. Zhuang, D. J. Valentino, A. W. Toga, Skull-strip** magnetic resonance brain images using a model-based level set, NeuroImage 32 (1) (2006) 79–92.

    Article  PubMed  Google Scholar 

  49. J.-M. Morel, A.-B. Petro, C. Sbert, Screened poisson equation for image contrast enhancement, Image Processing On Line 4 (2014) 16–29.

    Article  Google Scholar 

  50. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor image segmentation benchmark (brats), IEEE transactions on medical imaging 34 (10) (2014) 1993–2024.

    Article  PubMed  PubMed Central  Google Scholar 

  51. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, C. Davatzikos, Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features, Scientific data 4 (1) (2017) 1–13.

    Article  Google Scholar 

  52. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge, ar**v preprint ar**v:1811.02629 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Farnoosh.

Ethics declarations

Competing Interests

The authors report no competing Interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnoosh, R., Noushkaran, H. Application of a Modified Combinational Approach to Brain Tumor Detection in MR Images. J Digit Imaging 35, 1421–1432 (2022). https://doi.org/10.1007/s10278-022-00653-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00653-4

Keywords

Navigation