Log in

Facteurs pronostiques et prédictifs de réponse aux immunothérapies (TILs, TAM)

Prognostic and predictive response factors to immunotherapies (TILs, TAM)

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

Un grand nombre de biomarqueurs est à l’étude afin de préciser le pronostic de la maladie tumorale, notamment en situation adjuvante où les facteurs clinicopathologiques classiques peuvent faire défaut. La nature de l’infiltrat immunitaire intratumoral et son importance sont étroitement associées à la survie du patient. Tout type de cellule immunitaire peut se retrouver au sein d’une prolifération néoplasique avec une action pro- ou antitumorale. La caractérisation de ces paramètres immunitaires et leur impact sur la survie ont été définis comme la contexture immunitaire. Ainsi, la réponse lymphocytaire Th1 cytotoxique ainsi que la présence de TLS (tertiary lymphoid structures, structures lymphoïdes tertiaires) sont de bon pronostic, tandis qu’une réponse Th2, Th17, les lymphocytes T régulateurs (LTreg) et les TAMs apparaissent de pronostic péjoratif.

Abstract

A lot of biomarkers are under study in order to accurate cancer’s prognosis, especially in adjuvant setting, where classical clinicopathological features appear sometimes to be insufficient. Immune infiltrate is now recognized as tightly correlated to outcomes. All immune cell types may be found in a tumor and may have pro- or antitumoral effects. Characterization of the immune parameters and their correlation to outcomes have been defined as the immune contexture. Thus, the response of cytotoxic Th1 cells and the presence of TLS are associated with good prognosis while, the response of cytotoxic Th2 and Th17 cells and the presence of iTreg or TAMs appear to have pejorative prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Abbreviations

ADCC:

antibody dépendent cell-mediated cytotoxicity

CCR:

cancer colorectal

CD:

cellules dendritiques

CSF:

colony-stimulating-factor

CTL:

lymphocytes cytotoxiques

KIR:

killer inhibitory receptor

LAP:

latency-associated peptide

CMH:

complexe majeur d’histocompatibilité

MSI:

instabilité microsatellitaire

MSS:

stabilité microsatellitaire

pDC:

cellules dendritiques plasmatoïdes

TAA:

tumor-associated antigens

TAM:

macrophages associés aux tumeurs

TCR:

T cell receptor

Th:

T-helper

TLR:

toll-like receptor

Références

  1. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) Contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12: 298–306

    Article  CAS  PubMed  Google Scholar 

  2. Senovilla L, Vacchelli E, Galon J, et al. (2012) Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 1: 1323–43

    Article  PubMed Central  PubMed  Google Scholar 

  3. Galon J, Costes A, Sanchez-Cabo F, et al. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–4

    Article  CAS  PubMed  Google Scholar 

  4. Tosolini M, Kirilovsky A, Mlecnik B, et al. (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71: 1263–71

    Article  CAS  PubMed  Google Scholar 

  5. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39: 11–26

    Article  CAS  PubMed  Google Scholar 

  6. Pagès F, Berger A, Camus M, et al. (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353: 2654–66

    Article  PubMed  Google Scholar 

  7. Galon J, Pagès F, Marincola FM, et al. (2012) Cancer classification using the Immunoscore: a worldwide task force. Transl Med 10: 205

    Article  Google Scholar 

  8. Mlecnik B, Tosolini M, Kirilovsky A, et al. (2011) Histopathologicbased prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29: 610–8

    Article  PubMed  Google Scholar 

  9. Salgado R, Denkert C, Demaria S, et al. (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26: 259–71

    Article  CAS  PubMed  Google Scholar 

  10. Yan M, Qing Q, Yuzi Z, et al. (2014) Tumor infiltrating lymphocytes (TIL) to predict response to neoadjuvant chemotherapy in breast cancer: a systemic review and meta-analysis. J Clin Oncol 32 (suppl 26): abstr 138

    Google Scholar 

  11. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127: 759–67

    CAS  PubMed  Google Scholar 

  12. Curiel TJ, Coukos G, Zou W, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–9

    Article  CAS  PubMed  Google Scholar 

  13. Bates GJ, Fox SB, Han C, et al. (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24: 5373–80

    Article  PubMed  Google Scholar 

  14. Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27: 1–7

    Article  CAS  PubMed  Google Scholar 

  15. Scurr M, Ladell K, Besneux M, et al. (2014) Highly prevalent colorectal cancer-infiltrating LAP+ Foxp3–T cells exhibit more potent immunosuppressive activity than Foxp3+ regulatory T cells. Mucosal Immunol 7: 428–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ménétrier-Caux C, Curiel T, Faget J, et al. (2012) Targeting regulatory T cells. Target Oncol 7: 15–28

    Article  PubMed  Google Scholar 

  17. Baker K, Zlobec I, Tornillo L, et al. (2007) Differential significance of tumour infiltrating lymphocytes in sporadic mismatch repair deficient versus proficient colorectal cancers: a potential role for dysregulation of the transforming growth factor-beta pathway. Eur J Cancer 43: 624–31

    Article  CAS  PubMed  Google Scholar 

  18. Le DT, Uram JN, Wang H, et al. (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372: 2509–20

    Article  CAS  PubMed  Google Scholar 

  19. De Chaisemartin L, Goc J, Damotte D, et al. (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71: 6391–9

    Article  PubMed  Google Scholar 

  20. Germain C, Gnjatic S, Dieu-Nosjean MC (2015) Tertiary lymphoid structure-associated B cells are key players in anti-tumor immunity. Front Immunol 6: 67

    Article  PubMed Central  PubMed  Google Scholar 

  21. Figenschau SL, Fismen S, Fenton KA, et al. (2015) Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer 15: 101

    Article  PubMed Central  PubMed  Google Scholar 

  22. Goc J, Germain C, Sautès-Fridman C, et al. (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74: 705–15

    Article  CAS  PubMed  Google Scholar 

  23. Zhang QW, Liu L, Gong CY, et al. (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a metaanalysis of the literature. PLoS One 7: e50946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang M, He Y, Sun X, et al. (2014) A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 7: 19

    Article  PubMed Central  PubMed  Google Scholar 

  25. **ushi M, Komohara Y (2015) Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochim Biophys Acta 1855: 123–30

    CAS  PubMed  Google Scholar 

  26. Tang X, Mo C, Wang Y, et al. (2013) Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138: 93–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ghirelli C, Reyal F, Soumelis V (2015) Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes. Cancer Res

    Google Scholar 

  28. pii: canres.2386.2014

  29. Sisirak V, Faget J, Bendriss-Vermare N, et al. (2012) Impaired IFN-a production by plasmacytoid dendritic cells favors regulatory T cell expansion that may contribute to breast cancer progression. Cancer Res 72: 5188–97

    Article  CAS  PubMed  Google Scholar 

  30. Labidi-Galy SI, Treilleux I, Goddard-Leon S, et al. (2012) Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology 1: 380–2

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pernot S, Terme M, Voron T, et al. (2014) Colorectal cancer and immunity: what we know and perspectives. World J Gastroenterol 20: 3738–50

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Patsouris or N. Bendriss-Vermare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patsouris, A., Bendriss-Vermare, N. Facteurs pronostiques et prédictifs de réponse aux immunothérapies (TILs, TAM). Oncologie 17, 397–401 (2015). https://doi.org/10.1007/s10269-015-2548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-015-2548-6

Mots clés

Keywords

Navigation