Log in

Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Composites of gatifloxacin (GFLX)-loaded poly (lactic-co-glycolic) acid (PLGA) and β-tricalcium phosphate (βTCP) containing 0, 1, and 10 wt % GFLX (0, 1, and 10 wt % GFLX composites), and GFLX-loaded PLGA containing 1, 5, and 10 wt % GFLX (1, 5, and 10wt % GFLX-PLGA) as controls were fabricated and characterized in vitro and in vivo. On in vitro evaluation, the 10 wt % GFLX composite released GFLX over at least 28 days in Hanks’ balanced solution and exhibited clinically sufficient bactericidal activities against Streptococcus milleri and Bacteroides fragilis from 1 h to 10 days. The 0, 1, and 10 wt % GFLX composites and 10 wt % GFLX-PLGA were implanted in bone defects created by debridement of osteomyelitis lesions induced by S. milleri and B. fragilis in the mandible of rabbits (n = 5). Four weeks after implantation of the 10 wt % GFLX composite, inflammation in the debrided area disappeared in all the rabbits, while inflammation remained in all the rabbits after implantation of the 0 wt % GFLX composite and 10 wt % GFLX-PLGA, and in three rabbits after implantation of the 1 wt % GFLX composite. Bone formation appears to be less intense for the 10 wt % GFLX composite than for the 1 wt % GFLX composite probably owing to the rapid degradation of the 10 wt % GFLX composite. These findings show that the GFLX composite is effective for the local treatment of osteomyelitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshii T, Nishimura H, Yoshikawa T, Furudoi S, Yoshioka A, Takenono I, et al. Therapeutic possibilities of long-term roxithromycin treatment for chronic diffuse sclerosing osteomyelitis of the mandible. J Antimicrobial Chemother. 2001;47:631–7.

    Article  Google Scholar 

  2. Marx RE, Sawatari Y, Fortin M, et al. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg. 2005;63:1567–75.

    Article  PubMed  Google Scholar 

  3. Migliorati CA, Schubert MM, Peterson DE, Seneda LM. Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer. 2005;104:83–93.

    Article  PubMed  Google Scholar 

  4. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg. 2004;62:527–34.

    Article  PubMed  Google Scholar 

  5. Wannfors K, Gazelius B. Blood flow in jaw bones affected by chronic osteomyelitis. Br J Oral Maxillofac Surg. 1991;29:147–53.

    Article  PubMed  Google Scholar 

  6. Coviello V, Stevens MR. Contemporary concepts in the treatment of chronic osteomyelitis. Oral Maxillofac surg Clin North Am. 2007;19(vi):523–34.

    Article  PubMed  Google Scholar 

  7. Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint surg Am. 2004;86-A:2305–18.

    PubMed  Google Scholar 

  8. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364:369–79.

    Article  PubMed  Google Scholar 

  9. Kluin OS, van der Mei HC, Busscher HJ, Neut D. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv. 2013;10:341–51.

    Article  PubMed  Google Scholar 

  10. Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28:4880–8.

    Article  PubMed  Google Scholar 

  11. Panagopoulos P, Tsaganos T, Plachouras D, Carrer DP, Papadopoulos A, Giamarellou H, et al. In vitro elution of moxifloxacin and fusidic acid by a synthetic crystallic semihydrate form of calcium sulphate (Stimulan). Int J Antimicrob Agents. 2008;32:485–7.

    Article  PubMed  Google Scholar 

  12. Webb ND, McCanless JD, Courtney HS, Bumgardner JD, Haggard WO. Daptomycin eluted from calcium sulfate appears effective against Staphylococcus. Clin Orthop Relat Res. 2008;466:1383–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gogia JS, Meehan JP, Di Cesare PE, Jamali AA. Local antibiotic therapy in osteomyelitis. Semin Plast Surg. 2009;23:100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Laurencin CT, Gerhart T, Witschger P, Satcher R, Domb A, Rosenberg AE, et al. Bioerodible polyanhydrides for antibiotic drug delivery: in vivo osteomyelitis treatment in a rat model system. J Orthop Res. 1993;11:256–62.

    Article  PubMed  Google Scholar 

  15. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.

    Article  PubMed  Google Scholar 

  16. Turesin F, Gursel I, Hasirci V. Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed. 2001;12:195–207.

    Article  PubMed  Google Scholar 

  17. Yenice I, Calis S, Atilla B, Kas HS, Ozalp M, Ekizoglu M, et al. In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. J Microencapsul. 2003;20:705–17.

    Article  PubMed  Google Scholar 

  18. Abazinge M, Jackson T, Yang Q, Owusu-Ababio G. Comparison of in vitro and in vivo release characteristics of sustained release ofloxacin microspheres. Drug Deliv. 2000;7:77–81.

    Article  PubMed  Google Scholar 

  19. Koort JK, Makinen TJ, Suokas E, Veiranto M, Jalava J, Knuuti J, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:1502–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, et al. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother. 2005;56:1063–8.

    Article  PubMed  Google Scholar 

  21. Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/beta-TCP composite scaffolds. J Biomed Mater Res A. 2012;100:2295–301.

    PubMed  Google Scholar 

  22. Nelson CL, McLaren SG, Skinner RA, Smeltzer MS, Thomas JR, Olsen KM. The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. J Orthopaed Res. 2002;20:643–7.

    Article  Google Scholar 

  23. Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-epsilon-caprolactone and porous beta-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29:350–8.

    Article  PubMed  Google Scholar 

  24. Tamazawa G, Ito A, Miyai T, Matsuno T, Kitahara K, Sogo Y, et al. Gatifloxacine-loaded PLGA and beta-tricalcium phosphate composite for treating osteomyelitis. Dent Mater J. 2011;30:264–73.

    Article  PubMed  Google Scholar 

  25. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–6.

    PubMed  Google Scholar 

  26. Satoh T, Heimdahl A. Study on the formation of experimental infected rabbit. Shigaku. 1989;76:1520–6 (in Japanese with abstract in English).

    PubMed  Google Scholar 

  27. Satoh TYM, Abe A, Ishigaki Y, Miyasaka T, Adachi M. Transfer of a new quinolone, fleroxacin, to the oral tissues of experimentally infected rabbits. Chemotherapy. 1995;43:903–6.

    Google Scholar 

  28. Hosaka M, Yasue T, Fukuda H, Tomizawa H, Aoyama H, Hirai K. Invitro and invivo antibacterial Activities of Am-1155, a new 6-fluoro-8-methoxy quinolone. Antimicrob Agents chemothe. 1992;36:2108–17.

    Article  Google Scholar 

  29. Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs. 2000;59:1223–32.

    Article  PubMed  Google Scholar 

  30. Mori H, Takahashi T, Sagawa T, Matsunaga H, Matsumura M, Niimura K, et al. Chemical structure and physico-chemical properties of gatifloxacin hydrate. Iyakuhin Kenkyu. 1998;29:885–94.

    Google Scholar 

  31. Cai Q, Shi G, Bei J, Wang S. Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials. 2003;24:629–38.

    Article  PubMed  Google Scholar 

  32. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polym-Basel. 2011;3:1377–97.

    Google Scholar 

  33. Perry CM, Balfour JAB, Lamb HM. Gatifloxacin. Drugs. 1999;58:683–96.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomonori Matsuno or Atsuo Ito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimishima, K., Matsuno, T., Makiishi, J. et al. Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis. Odontology 104, 105–113 (2016). https://doi.org/10.1007/s10266-014-0187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-014-0187-9

Keywords

Navigation