Log in

Mesh Conditions of the Preserving-Maximum-Principle Linear Finite Volume Element Method for Anisotropic Diffusion-Convection-Reaction Equations

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We develop mesh conditions for linear finite volume element approximations of anisotropic diffusionconvectionreaction problems to satisfy the discrete maximum principle. We obtain the sufficient conditions to gurantee the both upper and lower bounds of the numerical solution when each angle of arbitrary triangle is \(\cal{O}(\Vert q\Vert_{\infty}h+\Vert g\Vert_{\infty}h^{2})\)-acute and h is small enough, where h denotes the mesh size, q and g are coefficients of the convection and reaction terms, respectively. To deal with the convection-dominated problems, we use the upwind triangle technique. For such scheme, the mesh condition can be sharper to \(\cal{O}(\Vert g\Vert_{\infty}h^{2})\)-acute. Some numerical examples are presented to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J. Some error estimates for the box method. SIAM J. Numer. Anal., 24(4): 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J.H., Hubbard, B.E., Thomée, V. Convergence estimates for essentially positive type discrete problems. Math. Comp., 23: 695–709 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandts, J.H., Korotov, S., Křížek, M. The discrete maximum principle for linear simplicial finite element approximations of a reactiondiffusion problem. Linear Algebra Appl., 429(10): 2344–2357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Ern, A. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Math. Acad. Sci. Paris, 338(8): 641–646 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chou, S.-H., Li, Q. Error estimates in L2, H1, L in covolume methods for elliptic and parabolic problem: A unified approach. Math. Comp., 69(229): 103–120 (2000)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G. Discrete maximum principle for finite-difference operators. Aequationes Math., 4: 338–352 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G., Raviart, P.-A. Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg., 2: 17–31 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978

    MATH  Google Scholar 

  9. Collatz, L. Numerische Behandlung von Differentialgleichungen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951

    Book  MATH  Google Scholar 

  10. Crumpton, P.I., Shaw, G.J., Ware, A.F. Discretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients. J. Comput. Phys., 116: 343–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ertekin, T., Abou-Kassem, J.H., King, G.R. Basic applied reservoir simulation. Richardson, Texas, 2001

    Book  Google Scholar 

  12. Forsythe, G.E., Wasow, W.R. Finite-Difference Methods for Partial Differential Equations. John Wiley & Sons., New York, London, 1960

    MATH  Google Scholar 

  13. Gao, F., Liang, D. A new weighted upwind finite volume element method based on non-standard covolume for time-dependent convectiondiffusion problems. Internat. J. Numer. Methods Fluids, 73(11): 953–975 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, Y., Liang, D., Li, Y. Optimal weighted upwind finite volume method for convectiondiffusion equations in 2D. J. Comput. Appl. Math., 359: 73–87 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gúnter, S., Yu, Q., Kruger, J., Lackner, K. Modelling of heat transport in magnetised plasmas using non-aligned coordinates. J. Comput. Phys., 209: 354–370 (2005)

    Article  MATH  Google Scholar 

  16. Gúnter, S., Lackner, K. A mixed implicitexplicit finite difference scheme for heat transport in magnetised plasmas. J. Comput. Phys., 228: 282–293 (2009)

    Article  MATH  Google Scholar 

  17. Karátson, J., Korotov, S. Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math., 99(4): 669–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karátson, J., Korotov, S., Křížek, M. On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simulation, 76: 99–108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, R., Chen, Z., Wu, W. Generalized difference methods for differential equations. Numerical analysis of finite volume methods, Monographs and Textbooks in Pure and Applied Mathematics, 226, Marcel Dekker, Inc., New York, 2000

    Google Scholar 

  20. Liang, D., Zhao, W. A high-order upwind method for the convection-diffusion problem. Comput. Methods Appl. Mech. Engrg., 147: 105–115 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, D., Zhao, W. An optimal weighted upwind covolume method on non-standard grids for convectiondiffusion problems in 2D. Internat. J. Numer. Methods Engrg., 67(4): 553–577 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, Y., Yang, M., Zou, Q. L2 error estimates for a class of any order finite volume schemes over quarilateral meshes. SIAM J. Numer. Anal., 53(4): 2009–2029 (2015)

    Article  MathSciNet  Google Scholar 

  23. Liska, R., Shashkov, M. Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems. Commun. Comput. Phys., 3(4): 852–877 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Lu, C., Huang, Wei., Qiu, J. Maximum principle in linear finite element approximations of anisotropic diffusionconvectionreaction problems. Numer. Math., 127(3): 515–537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lv, J., Li, Y. L2 error estimate of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math., 33(2): 129–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv, J., Li, Y. L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math., 37(3): 393–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lv, J., Li, Y. Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal., 50(5): 2379–2399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Milne, W.E. Numerical Solution of Differential Equations. John Wiley & Sons, Chapman & Hall, London, New York, 1953

    MATH  Google Scholar 

  29. Mlacnik, M.J., Durlofsky, L.J. Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput. Phys., 216: 337–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neumann, M. Weakly stability for matrices. Linear Multilinear Algebra, 7(3): 257–262 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perona, P., Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7): 629–639 (1990)

    Article  Google Scholar 

  32. Plemmons, R.J. M-matrix characterizations. I. nonsingular M-matrices. Linear Algebra Appl., 18(2): 75–188 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sharma, P., Hammett, G.W. Preserving monotonicity in anisotropic diffusion. J. Comput. Phys., 227: 123–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stoyan, G. On maximum principles for monotone matrices. Linear Algebra Appl., 78: 147–161 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tabata, M. A finite element approximation corresponding to the upwind differencing. Mem. Numer. Math., 4: 47–63 (1977)

    MathSciNet  MATH  Google Scholar 

  36. Tabata, M., Fujima, S. An upwind finite element scheme for high Reynord-number flow. Internat. J. Numer. Methods Fluids, 12(4): 305–322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tabata, M., Fujima, S. Finite-element analysis of high Reynolds number flows past a circular cylinder. J. Comput. Appl. Math., 38: 411–424 (1991)

    Article  MATH  Google Scholar 

  38. Terekhov, K.M., Mallison, B.T., Tchelepi, H.A. Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. J. Comput. Phys., 330: 245–267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Varga, R.S. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962

    MATH  Google Scholar 

  40. Varga, R.S. On a discrete maximum principle. SIAM J. Numer. Anal., 3(2): 355–359 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, J., Zhang, R. Maximum principle for P1-conforming finite element approximations of quasi linear second order elliptic equations. SIAM J. Numer. Anal., 50(2): 626–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J., Ye, X., Zhai, Q., Zhang, R. Discrete maximum principle for the P1P0 weak Galerkin finite element approximations. J. Comput. Phys., 362: 114–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X., Li, Y. L2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal., 54(5): 2729–2749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weickert, J. Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart, 1998

    MATH  Google Scholar 

  45. Xu, J., Zikatanov, L. A monotone finite element scheme for convection-diffusion equations. Math. Comp., 68(228): 1429–1446 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zou, Q. An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations. J. Sci. Comput., 70(1): 112–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-liang Lv.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

The project is supported by the National Natural Science Foundation of China (No. 11301033, 11971069 and 12271209), the Natural Science Foundation of Jilin Province (No. 20200201259JC) and Jilin Province Science and Technology Plan Development Project (No. 20210201078GX).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Lv, Jl., Yue, Jy. et al. Mesh Conditions of the Preserving-Maximum-Principle Linear Finite Volume Element Method for Anisotropic Diffusion-Convection-Reaction Equations. Acta Math. Appl. Sin. Engl. Ser. 39, 707–732 (2023). https://doi.org/10.1007/s10255-023-1060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-023-1060-9

Keywords

2000 MR Subject Classification

Navigation