Log in

Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294–7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, N.A., Shariff, K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys., 127: 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Shu, C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys., 160: 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borges, R., Carmona, M., Costa, B., Don, W.S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys., 227: 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colonius, T., Lele, S.K. Computational aeroacoustics: progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 40: 345–416 (2004)

    Article  Google Scholar 

  5. Deng, X., Mao, M., Tu, G., Zhang, Y., Zhang, H. Extending the fifth-order weighted compact nonlinear scheme to complex grids with characteristic-based interface conditions. AIAA J., 48: 2840–2851 (2010)

    Article  Google Scholar 

  6. Deng, X., Zhang, H. Develo** high-order weighted compact nonlinear schemes. J. Comput. Phys., 165: 22–44 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harten, A., Engquist, B., Osher, S., Chakravarthy, S. Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys., 71: 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrick, A.K., Aslam, T.D., Powers, J.M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys., 207: 542–567 (2005)

    Article  MATH  Google Scholar 

  9. Jiang, G.-S., Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126: 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103: 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, X.-D., Osher, S., Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115: 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43: 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saad, M.A. Compressible Fluid Flow. New Jersey: Prentice Hall, 1993

    MATH  Google Scholar 

  14. Sebastian, K., Shu, C.-W. Multi domain WENO finite difference method with interpolation at subdomain interfaces. J. Sci. Comput., 19: 405–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shu, C.-W., Osher, S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys., 77: 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.-W., Osher, S. Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys., 83: 32–78 (1999)

    Article  MathSciNet  Google Scholar 

  17. Venkatakrishnan, V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys., 118: 120–130 (1995)

    Article  MATH  Google Scholar 

  18. Zhang, L.P., Wang, Z.J. A block LU-SGS implicit dual time-step** algorithm for hybrid dynamic meshes. J. Comput. Phys., 33: 891–916 (2004)

    MATH  Google Scholar 

  19. Zhang, S., Jiang, S., Shu, C.-W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. J. Comput. Phys., 227: 7294–7321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, S., Jiang, S., Shu, C.-W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J. Sci. Comput., 47: 216–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, S., Shu, C.-W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solution. J. Sci. Comput., 31: 273–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, S., Zhang, H., Shu, C.-W. Topological structure of shock induced vortex breakdown. Journal of Fluid Mech., 639: 343–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, S., Zhang, Y.-T., Shu, C.-W. Multistage interaction of a shock wave and a strong vortex. Phys. Fluid 17, 116101, 2005

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hai Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grants 11172317, 91016001) and 973 Program 2009CB724104.

Supported by 973 program 2009CB723800.

Supported by AFOSR Grant FA9550-09-1-0126 and NSF grants DMS-0809086 and DMS-1112700.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Sh., Deng, Xg., Mao, Ml. et al. Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes. Acta Math. Appl. Sin. Engl. Ser. 29, 449–464 (2013). https://doi.org/10.1007/s10255-013-0230-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-013-0230-6

Keywords

2000 MR Subject Classification

Navigation