Log in

A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and Trends

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Geophysical exploration can be effective in detecting and monitoring potential sources of coal mine water in-rushes and underground watercourses. Generally, in-mine seismic, DC resistivity, and transient electromagnetic methods are used for such purposes in China. However, such technologies can be influenced by many factors, such as roadways, fissures in the surrounding rocks, and various secondary conditions. Our review of current geophysical methods and tools concludes that further basic research should be carried out on geophysical field propagation in the whole space, data collection methods, and inversion methods appropriate for the special environment of coal mines. Moreover, borehole and roadway space should be designed to incorporate effective geophysical drilling, cross-hole exploration, drilling–roadway exploration, and roadway–roadway exploration. Future hydrogeophysical exploration research should focus on comprehensive geophysical methods combining multi-field synergistic observations with multi-field data integration and automatic monitoring as well as early warning systems for mine water disasters combining real-time processing and analysis of exploration equipment with Internet of Things technology.

摘要

地球物理勘探是探测、监测潜在突水水源和导水通道的有效方法。**普遍采用地震勘探、直流电法和瞬变电磁法地球物理勘探方法。然而,这些技术易受巷道、围岩裂隙和各类次生条件等影响。由现代地球物理方法和工具综述得出,未来地球物理勘探应该加**全空间地球物理场理论、数据采集和煤矿特殊环境反演方法的研究,充分利用巷道、钻孔空间开展孔中物探、跨孔物探、孔-巷物探和巷-巷物探等新方法的研究。未来水文地球物理勘探研究应该致力于多场协同观测与数据整合、自动监测与水害早期预警、勘探设备联网实时数据处理和分析等综合物理勘探方法研究。

Zusammenfassung

Die geophysikalische Erkundung stellt eine gute Möglichkeit dar, um unterirdischer Wasserläufe und potentielle Bereiche für Wassereinbrüche in Kohlebergwerken festzustellen und zu überwachen. Zu diesem Zweck werden in chinesischen Bergwerken üblicherweise seismische-, Transienten-Elektromagnetische- und Direktstromwiderstands-Verfahren angewendet. Diese Technologien können jedoch von zahlreichen Einflussfaktoren wie z.B. Stollen, Klüften im umgebenden Gestein und diversen sekundären Faktoren beeinflusst werden. Unsere Review aktueller geophysikalischer Methoden und Hilfsmittel legt den Schluss nahe, dass weitere Grundlagenforschung in den Bereichen Datenerfassungsmethodik und geophysikalische Feldausbreitung im Raum sowie Inversionsverfahren, welche sich für die besonderen Bedingungen in Bergwerken eignen, erforderlich ist. Darüber hinaus sollten Bohrlöcher und Stollen so angelegt und dimensioniert werden, dass geophysikalische Bohrungen, Querbohrungs-, Stollenbohrungs- und Stollen-Stollen-Erkundungen Berücksichtigung finden können. Zukünftige Forschung im Bereich hydrogeophysikalische Erkundung sollte auf gesamtheitliche geophysikalische Methoden fokussieren, welche Mehrfeld-synergetische Beobachtungen mit Mehrfeld-Datenintegration und automatischem Monitoring sowie Frühwarnsystemen für Wassereinbrüche verbinden, wodurch die Echtzeitverarbeitung und das Equipment für die Auswertung der Erkundungen mit der Internet der Dinge (Internet of Things) Technologie kombiniert werden.

Resumen

La exploración geofísica puede ser efectiva en detectar y monitorear fuentes potenciales de agua de mina de carbón en irrupciones y en cursos de agua subterráneos. Para tales propósitos en China se usan sísmica en mina, resistividad CC y métodos electromagnéticos transientes. No obstante, esas tecnologías pueden ser influidas por muchos factores, tales como fisuras en las rocas circundantes y varias condiciones secundarias. Nuestra revisión de los métodos geofísicos actuales y herramientas concluye que investigación básica debería ser aún realizadas sobre la propagación del campo geofísico en todo el espacio, métodos para colectar dotso y métodos de inversión apropiados para el ambiente especial de las minas de carbón. Sin embargo, el pozo de perforación y el espacio de la calzada deberían ser diseñados para incorporar perforación geofísica efectiva, exploración de agujeros, exploración de perforación-calzada y exploración de carreteras-carreteras. La futura investigación en exploración hidrogeofísica debería focalizarse en métodos geofísicos que combinen observaciones multicampo sinergéticas con monitoreo automático e integración de datos multi-campo tanto como sistemas de alerta temprana para desastres con agua de mina combinando procesamiento en tiempo real y análisis de equipamiento de exploración con tecnología `internet de las cosas`.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bennington NL, Zhang HJ, Thurber CH, Bedrosian PA (2015) Joint inversion of seismic and magnetotelluric data in the Parkfield Region of California using the normalized cross-gradient constraint. Pure Appl Geophys 172(5):1033–1052

    Article  Google Scholar 

  • Bevc D, Morrison HF (1991) Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment. Geophysics 56(6):769–777

    Article  Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Hydrogeophysics. Springer, pp 129–156

  • Borm G, Giese R, Klose C, Mielitz S, Otto P, Bohlen Th (2003) ISIS-integrated seismic imaging system for the geological prediction ahead of underground construction. EAGE 65th Conf and Exhibition Extended Abstr, EAGE Publ BV, ISBN:90-73781-26-4, Z99

  • Cardarelli E, Cerrto A (2002) Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography. Geophys Prosp 50:55–72

    Article  Google Scholar 

  • Cheng JY, Shi XX (2013) Current status and development of coal geophysical technology in China. Progr Geophys 28(4):2024–2032 (in Chinese)

    Google Scholar 

  • Cheng JL, Qiu H, Ye YT, Yan GC, Zhou J, Cheng FB (2013) Research on wavefield transformation and data processing of the mine transient electromagnetic method. J China Coal Soc 38(9):1646–1650 (Chinese)

    Google Scholar 

  • Cheng JL, Li F, Peng SP, Sun XY (2014) Research progress and development direction on advanced detection in mine roadway working face using geophysical methods. J China Coal Soc 39(8):1742–1750 (Chinese)

    Google Scholar 

  • Cimino A, Cosentino C, Oieni A, Tranchina L (2007) A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (northern Sicily). Environ Geol 55:1473–1482

    Article  Google Scholar 

  • Danielson JE, Auken E, Jorgensen F (2003) The application of the transient electromagnetic method in hydro-geophysical surveys. J Appl Geophys 53:181–198

    Article  Google Scholar 

  • Dickmann T, Sander B (1996) Drivage concurrent tunnel seismic prediction. Felsbau Soil Eng 14(1):406–411

    Google Scholar 

  • Dong SN, Hu WY (2007) Basic characteristics and main controlling factors of coal mine water hazard in China. Coal Geol Explor 35(05):34–38 (in Chinese)

    Google Scholar 

  • Elwaseif M, Ismail A, Abdalla M, Abdel-Rahman M, Hafez MA (2012) Geophysical and hydrological investigations at the west bank of Nile River (Luxor, Egypt). Environ. Earth Sci 67(3):911–921

    Article  Google Scholar 

  • Emslie A, Lagace R, Strong P (1975) Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Trans Antenn Propag AP 23(2):192–205

    Article  Google Scholar 

  • Ford SR, Phillips WS, Walter WR, Pasyanos ME, Mayeda K, Dreger DS (2010) Attenuation tomography of the Yellow Sea/Korean Peninsula from Coda-source normalized and direct Lg amplitudes. Pure Appl Geophys 167(10):1163–1170

    Article  Google Scholar 

  • Gélis C, Noble M, Cabrera J, Penz S, Chauris H, Cushing EM (2016) Ability of high-resolution resistivity tomography to detect fault and fracture zones: application to the Tournemire experimental platform, France. Pure Appl Geophys 173(2):573–589

    Article  Google Scholar 

  • Hamdan HA, Vafidis A (2013) Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ Earth Sci 68:1877–1885

    Article  Google Scholar 

  • Hamdan HA, Kritikakis G, Andronikidis N, Economou N, Manoutsoglou E, Vafidis A (2010) Integrated geophysical methods for imaging saline karst aquifers: a case study of Stylos, Chania, Greece. J Balkan Geophys Soc 13(1):1–8

    Google Scholar 

  • Han DP, Shi YD (2000) The numerical simulation of the electrical penetration methods at coal mining working face in roof or floor and in coal seam. J China Coal Soc 25(S):30–33 (in Chinese)

    Google Scholar 

  • Han DP, Li D, Cheng JL, Wang P (2010) DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer. J China Coal Soc 35(4):635–639 (Chinese)

    Google Scholar 

  • Holloway CL, Hill DA, Dalke RA, Hufford GA (2000) Radio wave propagation characteristics in lossy circular waveguides such as tunnels, mine shafts, and boreholes. IEEE Trans Antennas Propag 48(9):1354–1366

    Article  Google Scholar 

  • Hu WY, Tian G (2010) Mine water disaster type and prevention and control counter measures in China. Coal Sci Technol 38(01):92–96 (in Chinese)

    Google Scholar 

  • Hu XW, Zhang PS, Yan JP, Wu RX, Guo LQ (2014) Spread stack interpretation means of apparent resistivity in roadway advanced detection with transient electromagnetic method. J China Coal Soc 39(5):925–931 (in Chinese)

    Google Scholar 

  • Inazaki T, Isahai H, Kawamura S, Kurahashi T, Hayashi H (1999) Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face. Lead Edge 18(12):1429–1431

    Article  Google Scholar 

  • Ji GZ, Cheng JY, Zhu PM, Li H (2012)3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine. Chin J Geophys 55(2):645–649 (in Chinese)

    Google Scholar 

  • Khalil MA, Abbas AM, Santos FM, Masoud U, Salah H (2013) Application of VES and TDEM techniques to investigate seawater intrusion in Sidi Abdel Rahman area, northwestern coast of Egypt. Arab J Geosci 6(8):3039–3101

    Article  Google Scholar 

  • Krey T, Arnetzl H, Knecht M (1982) Theoretical and practical aspects of absorption in the application of in-seam seismic coal exploration. Geophysics 47(12):1645–1656

    Article  Google Scholar 

  • Krishnamurthy NS, Ananda Rao V, Kumar D, Singh KKK, Ahmed S (2009) Electrical resistivity imaging technique to delineate coal seam barrier thickness and demarcate water filled voids. J Geol Soc India 73(5):639–650

    Article  Google Scholar 

  • Li D, Han DP, Shi YD, Shi XF (2010) A DC electrical penetration method for prospecting the coal face along the same coal layer. J China Coal Soc 35(8):1336–1340 (Chinese)

    Google Scholar 

  • Li SC, Liu B, Li SC, Zhang QS, Nie LC, Li LP, Xu ZH, Zhong SH (2011) Study of advanced detection for tunnel water-bearing geological structures with induced polarization method. Chin J Rock Mech Eng 30(7):1297–1309 (in Chinese)

    Google Scholar 

  • Li X, Xue GQ, Liu YA, Qian JB (2012) A research on TEM imaging method based on synthetic-aperture technology. Chin J Geophys 55(1):333–340 (in Chinese)

    Article  Google Scholar 

  • Liang QH, Song J (2009) Advanced detection theory and experimental research of multi-wave and multi-component seismic exploration in mine. J Cent South Univ T 40(5):1392–1398 (Chinese)

    Google Scholar 

  • Lin J, Jiang CD, Lin TT, Duan QM, Wang YJ, Shang XL, Fan TH, Sun SQ, Tian BF, Zhao J, Qin SW (2013) Underground magnetic resonance sounding (UMRS) for detection of disastrous water in mining and tunneling. Chin J Geophys 56(11):3619–3628 (in Chinese)

    Google Scholar 

  • Liu SC, Yue JH, Liu ZX (2005) Coal mine hydro geophysical exploration technology and application. China Univ of Mining and Technology Press, XuZhou (in Chinese)

    Google Scholar 

  • Liu SD, Wu RX, Zhang PS, Cao Y (2009) Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mine. J China Coal Soc 34(7):927–932 (Chinese)

    Google Scholar 

  • Liu SD, Yang SL, Cao Y, Liu J (2010) Analysis about response of geoelectric field parameters to water inrush volume from coal seam roof. J Min Safety Eng 27(3):341–345 (Chinese)

    Google Scholar 

  • Liu SD, Liu J, Yue JH (2014) Development status and key problems of Chinese mining geophysical technology. J China Coal Soc 39(1):19–25 (Chinese)

    Google Scholar 

  • McGrath R, Styles P, Thomas E, Neale S (2002) Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environ Geol 42(5):552–557

    Article  Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66:261–330

    Article  Google Scholar 

  • Otto R, BuRon E, Bretterebner H, Schwab P (2002) The application of TRT (true reflection tomography) at the Unterwald tunnel in Felsbau. Geophysics 20(2):51–56

    Google Scholar 

  • Qiang JK, Ruan BY, Zhou JJ (2010) Research on the array of electrodes of advanced focus detection with 3D DC resistivity in tunnel. Chin J Geophys 53(3):695–699 (in Chinese)

    Google Scholar 

  • Räder D, Schott W, Dresen L, Rüter H (1985) Calculation of dispersion curves and amplitude-depth distribution of Love channel waves in horizontally layered media. Geophys Prospect 33:800–816

    Article  Google Scholar 

  • Ruan BY, Deng XK, Liu HF, Zhou L, Zhang L (2009) Research on a new method of DC resistivity on focusing advanced detection in roadway. Chin J Geophys 52(1):289–296 (in Chinese)

    Article  Google Scholar 

  • Shen HY, Li QC, Feng H (2009) Migration imaging for tunnel reflected wave seismic prediction ahead. J China Coal Soc 34(3):298–304 (Chinese)

    Google Scholar 

  • Singh KKK (2015) MineVue radar for delineation of coal barrier thickness in underground coal mines: case studies. J Geol Soc India 85(2):247–253

    Article  Google Scholar 

  • Villain L, Sundström N, Perttu N, Alakangas L, Öhlander B (2015) Evaluation of the effectiveness of backfilling and sealing at an open-pit mine using ground penetrating radar and geoelectrical surveys, Kimheden, northern Sweden. Environ Earth Sci 73(8):4495–4509

    Article  Google Scholar 

  • Wu RX, Zhang PS, Liu SD, Xu C, Huang H (2010) Radio wave penetration by the device of one-transmitter and two-receivers for coal face and its application. J China Coal Soc 35(s1):170–175 (in Chinese)

    Google Scholar 

  • Wu CF, Liu SD, Yang SL, Lu T, Wang B (2013a) Natural potential response during the coal rock failure process. J China Coal Soc 38(1):50–54 (Chinese)

    Google Scholar 

  • Wu Q, Cui FP, Zhao SQ, Liu SQ, Zeng YF, Gu YW (2013b) Type classification and main characteristics of mine water disasters. J China Coal Soc 38(04):561–565 (Chinese)

    Google Scholar 

  • Xu JP, Liu SD, Wang B, Zhang P, Gui H (2012) Electrical monitoring criterion for water flow in faults activated by mining. Mine Water Environ 31(3):172–178

    Article  Google Scholar 

  • Yang Z, Ge MC, Wang SG (2009) Characteristics of transmitting channel wave in a coal seam. Min Sci Technol 19(3):331–336

    Google Scholar 

  • Yang XH, Cao SY, Li DC, Yu PF, Zhang HR (2014) Analysis of quality factors for Rayleigh channel waves. Appl Geophys 11(01):107–114

    Article  Google Scholar 

  • Yu JC (1999) Research on theory and application technology of mining transit electromagnetic. PhD Diss, China Univ of Mining and Technology, XuZhou (in Chinese)

  • Yu JC, Liu ZX, Liu SC (2007) Theoretical analysis of mine transient electromagnetic method and its application in detecting water burst structures in deep coal stope. J China Coal Soc 32(8):818–821 (Chinese)

    Google Scholar 

  • Zhang PS, Guo LQ (2011) Detection technology by reflection wave for backwall grouting quality of a vertical shaft. J Min Safe Eng 28(1):116–121 (Chinese)

    Google Scholar 

  • Zhang PS, Liu SD (2006) Character appearance of fault structure in seismic wave CT inversion for mine work faces detecting. J China Coal Soc 31(1):35–39 (Chinese)

    Google Scholar 

  • Zhang PS, Liu SD, Wu JS (2007) Study on detecting simulation ahead of tunnel and laneway and its migration technique. Chin J Rock Mech Eng 26(7):2847–2851 (in Chinese)

    Google Scholar 

  • Zheng XL, Liu SD (2008) Design on parallel collection network electrical instrument base on double processors. Coal Sci Technol 36(4):85–88 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation and ShenHua Group Corporation Ltd for funding this research (U1261202). We also thank Anhui Huizhou of the Geology Security Institute and CCTEG **’an Research Institute for help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuo Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Liu, Sd., Wang, B. et al. A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and Trends. Mine Water Environ 36, 331–340 (2017). https://doi.org/10.1007/s10230-017-0467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0467-z

Keywords

Navigation