Log in

Recent advancements in indoor electronic travel aids for the blind or visually impaired: a comprehensive review of technologies and implementations

  • Review
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

The human sense of vision is a critical tool for interaction and exploration in the physical world. However, this valuable faculty can be impaired by a range of causes, such as congenital disabilities, accidents, or illnesses. Blind or visually impaired persons (BVIP) face considerable challenges in navigation, especially in unfamiliar settings, impeding their autonomy and exposing them to potential hazards. Electronic travel aids (ETAs) have emerged as a solution, providing support for mobility and facilitating autonomous navigation through information on the environment, the user's location, and directional instructions. Despite the existence of these systems, the literature lacks a comprehensive approach to integrating various functions into ETAs to enhance their support of indoor navigation activities for BVIP. This systematic literature review analysed previous ETAs and evaluated them based on the technologies employed and the functions they fulfil. A thorough search was conducted across ten journal databases, focusing on articles published between 2017 and 2022 to capture the most recent advancements in related ETA technologies. The results of this review highlight a promising avenue for future research in develo** advanced ETAs for indoor navigation by BVIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data or information used to support the results reported in the article can be found in the references section of this manuscript. The peer reviewer may check on the hyperlinks provided in the references section to validate the information included in the main body of the manuscript.

Abbreviations

BVIP:

Blind or visually impaired people

BLE:

Bluetooth low energy

CV:

Computer vision

CNN:

Convolution neural network

EOAs:

Electronic orientation aids

ETAs:

Electronic travel aids

IP:

Image processing

LZ:

Localization

ML:

Machine learning

NFC:

Near-field communication

OR:

Object recognition

ODA:

Obstacle detection and avoidance

PLDs:

Position locator devices

RFID:

Radio-frequency identification

US:

Ultrasonic sensor

UWB:

Ultra-wideband

VLC:

Visible light communication

VBT:

Vision-based technology

VATs:

Visual assistive technologies

WHO:

World Health Organization

References

  1. Sreenivasulu, K., Rao, K., Motupalli, V.: A comparative review on object detection system for visually impaired. Turk. J. Comput. Math. Edu. (TURCOMAT) 12(2), 1598–1610 (2021). https://doi.org/10.17762/turcomat.v12i2.1442

    Article  Google Scholar 

  2. World Health Organisation (WHO): Blindness and vision impairment (2022). https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.

  3. Bourne, R., Steinmetz, J.D., Flaxman, S., et al.: Trends in the prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Global Health. 9(2), e130–e143 (2021)

    Article  Google Scholar 

  4. Kuriakose, B., Shrestha, R., Sandnes, F.E.: Tools and technologies for blind and visually impaired navigation support: a review. IETE Tech. Rev. (Inst. Electron. Telecommun. Eng. India 1(1), 1–16 (2020). https://doi.org/10.1080/02564602.2020.1819893

    Article  Google Scholar 

  5. Harper, S.: Standardising electronic travel aid interaction for visually impaired people (1998). http://www.simonharper.info/publications/Harper1998qy.pdf

  6. Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: a state of the art survey. Pattern Recognit. Lett. 137(xxxx), 37–52 (2020). https://doi.org/10.1016/j.patrec.2018.10.031

    Article  ADS  Google Scholar 

  7. Fei, Z., Yang, E., Hu, H., Zhou, H.: Review of machine vision-based electronic travel aids. In: ICAC 2017—2017 23rd IEEE International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing, September, pp. 7–8 (2017). https://doi.org/10.23919/IConAC.2017.8082021

  8. Darabont, D. C., Badea, D. O., Trifu, A., Fogarassy, P.: The impact of new assistive technologies on specific occupational risks for blind and visual impaired peoples. In: MATEC Web of Conferences, Vol. 305, No. 00079 (2020). https://doi.org/10.1051/matecconf/202030500079

  9. Patel, K., Parmar, B.: Assistive device using computer vision and image processing for visually impaired: review and current status. Disabil. Rehabil. Assist. Technol. (2020). https://doi.org/10.1080/17483107.2020.1786731

    Article  PubMed  Google Scholar 

  10. Azzopardi, G., Petkov, N.: Computer analysis of images and patterns: 16th international conference. In: CAIP 2015 Valletta, Malta, September 2-4, 2015 proceedings, part II. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9257, pp. 604–615 (2015). https://doi.org/10.1007/978-3-319-23117-4

  11. Lim, K. L., Seng, K. P., Yeong, L. S., Ang, L. M.: RFID and dead-reckoning-based indoor navigation for visually impaired pedestrians. In: Handbook of Research on Recent Developments in Intelligent Communication Application, January, pp. 380–396 (2017). https://doi.org/10.4018/978-1-5225-1785-6.ch015

  12. Chandekar, T., Chouhan, R., Gaikwad, R., Gosavi, H., Darade, S.: Implementation of obstacle detection and navigation system for visually impaired using smart shoes. IRJET J. 4(4), 2125–2129 (2017)

    Google Scholar 

  13. Chumkamon, S., Tuvaphanthaphiphat, P., Keeratiwintakorn, P.: A blind navigation system using RFID for indoor environments. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, Vol. 2, No 13, pp. 765–768 (2017). https://doi.org/10.1109/ECTICON.2008.4600543

  14. Doush, I.A., Alshatnawi, S., Al-Tamimi, A.K., Alhasan, B., Hamasha, S.: ISAB: integrated indoor navigation system for the blind. Interact. Comput. 29(2), 181–202 (2017). https://doi.org/10.1093/IWC/IWW016

    Article  Google Scholar 

  15. Endo, Y., Sato, K., Yamashita, A., Matsubayashi, K.: Indoor positioning and obstacle detection for visually impaired navigation system based on LSD-SLAM. In: Proceedings of 2017 International Conference on Biometrics and Kansei Engineering, ICBAKE 2017, pp. 158–162 (2017). https://doi.org/10.1109/ICBAKE.2017.8090635

  16. Hoang, V.-N., et al.: Obstacle detection and warning system for visually impaired people based on electrode matrix and mobile Kinect. Vietnam J. Comput. Sci. 4(2), 71–83 (2017). https://doi.org/10.1007/S40595-016-0075-Z

    Article  MathSciNet  Google Scholar 

  17. Jhonny, G. P., Carlos, V. A., Luis, S. A., Eduardo, P. V.: Special glasses for obstacle detection with location system in case of emergency and aid for recognition of dollar bills for visually impaired persons. In: 2017 IEEE Healthcare Innovations and Point of Care Technologies, HI-POCT 2017, 2017-Decem, pp. 68–71 (2017). https://doi.org/10.1109/HIC.2017.8227586

  18. Khan, A., Prakash, G.: Design and implementation of smart glass with voice detection capability to help visually impaired people. Int. J. MC Square Sci. Res. 9(3), 53–59 (2017). https://doi.org/10.20894/ijmsr.117.009.003.008

    Article  Google Scholar 

  19. Manoj, B.G., Rohini, V.: A novel approach to object detection and distance measurement for visually impaired people. Int. J. Comput. Intell. Res. 13(4), 479–484 (2017)

    Google Scholar 

  20. Sato, D., Oh, U., Naito, K., Takagi, H., Kitani, K., Asakawa, C.: NavCog3: An evaluation of a smartphone-based blindindoor navigation assistant with semantic features in a large-scale environment. In: ASSETS 2017—Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 270–279 (2017). https://doi.org/10.1145/3132525.3132535

  21. Zeng, L., Weber, G., Ravyse, I., Simros, M., Van Erp, J., Mioch, T., Conradie, P., Saldien, J.: Range-IT: detection and multimodal presentation of indoor objects for visually impaired people. In: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2017 (2017). https://doi.org/10.1145/3098279.3125442

  22. Bhat, P. G., Rout, D. K., Subudhi, B. N., Veerakumar, T.: Vision sensory substitution to aid the blind in reading and object recognition. In: 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua, pp. 432–437 (2018). https://doi.org/10.1109/ICIIP.2017.8313754

  23. Gomes, J. P., Sousa, J. P., Cunha, C. R., Morais, E. P.: An indoor navigation architecture using variable data sources for blind and visually impaired persons. In: Iberian Conference on Information Systems and Technologies, CISTI, 2018-June, pp. 1–5 (2018). https://doi.org/10.23919/CISTI.2018.8399347

  24. Islam, M. I., Raj, M. M., Nath, S., Rahman, M. F., Hossen, S., Imam, M. H.: An indoor navigation system for visually impaired people using a path finding algorithm and a wearable cap. In: 2018 3rd International Conference for Convergence in Technology, I2CT 2018 (2018). https://doi.org/10.1109/I2CT.2018.8529757

  25. Jadhav, S., Rathod, A., Shinde, V., Patil, P.: Li–Fi based blind indoor navigation system. IRJET 5(4), 2943–2945 (2018)

    Google Scholar 

  26. Jafri, R., Khan, M.M.: User-centered design of a depth data based obstacle detection and avoidance system for the visually impaired. Hum. Centric Comput. Inf. Sci. (2018). https://doi.org/10.1186/s13673-018-0134-9

    Article  Google Scholar 

  27. Kim, B., Seo, H., Kim, J.D.: Design and implementation of a wearable device for the blind by using deep learning based object recognition. Lect. Notes Electr. Eng. 474, 1008–1013 (2018). https://doi.org/10.1007/978-981-10-7605-3_161/COVER

    Article  Google Scholar 

  28. Krishna, B.V., Aparna, K.: Iot-based indoor navigation wearable system for blind people. Adv. Intell. Syst. Comput. 668, 413–421 (2018). https://doi.org/10.1007/978-981-10-7868-2_40/COVER/

    Article  Google Scholar 

  29. Manikanta, K.S., Phani, T.S.S., Pravin, A., Student, M.T.: Implementation and design of smart blind stick for obstacle detection and navigation system. Int. J. Eng. Sci. Comput. 5(10), 18785 (2018)

    Google Scholar 

  30. Meliones, A., Sampson, D.: Blind museumtourer: a system for self-guided tours in museums and blind indoor navigation. Technologies 6(1), 4 (2018). https://doi.org/10.3390/technologies6010004

    Article  Google Scholar 

  31. Milici, S., Esposito, A., M. Staderini, E.: A wireless indoor navigation aid for visually impaired people using UWB localization infrastructure and an original wayfinding algorithm. In: Adjunct Proceedings of the 14th International Conference on Location Based Services, pp. 158–162 (2018). https://www.research-collection.ethz.ch/handle/20.500.11850/225610%0Ahttps://hesso.tind.io/record/2415/files/Staderini_2018_Wireless_Indoor_Navigation_Aid_Visually_Impaired.pdf%0Ahttp://hdl.handle.net/20.500.11850/225610%0Ahttps://doi.org/10.3929/ethz-b-0

  32. Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K. M., Asakawa, C.: Smartphone-based indoor localization for blind navigation across building complexes. In: 2018 IEEE International Conference on Pervasive Computing and Communications, PerCom 2018 (2018). https://doi.org/10.1109/PERCOM.2018.8444593

  33. Narupiyakul, L., Sanghlao, S., Yimwadsana, B.: An indoor navigation system for the visually impaired based on RSS lateration and RF fingerprint. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10898 LNCS, pp. 225–235 (2018). https://doi.org/10.1007/978-3-319-94523-1_20

  34. Nemer, Z.: Smart vision system forthe blind people using image segmentation and edge detection. J. Coll. Educ Pure Sci. 8(3), 23–31 (2018). https://doi.org/10.32792/utq.jceps.08.03.03

    Article  MathSciNet  Google Scholar 

  35. Pravin, M., Sundararajan, T. V. P.: VLC based indoor blind navigation system. In: 2018 9th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2018 (2018). https://doi.org/10.1109/ICCCNT.2018.8493989

  36. Ramesh, K., Nagananda, S. N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. In: 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, pp. 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082

  37. Rihan, M., Seym, H.: An effective navigation system combining both object detection and obstacle detection based on depth information for the visually impaired (2018). http://103.82.172.44:8080/xmlui/handle/123456789/547

  38. Vadwala, A., et al.: Object detection system using arduino and android application for visually impaired people. Int. J. Comput. Appl. 181(15), 42–44 (2018). https://doi.org/10.5120/ijca2018917797

    Article  Google Scholar 

  39. Abhigna, R., Shinde, A.K., Sundaresh, A., Dheeraj, P.R., Vijaya, P.A.: Sole mate: Safe path-finding by obstacle detection and distance estimation for the blind. Int. J. Innov. Technol. Explor. Eng. 8(6 Special Issue 4), 50–54 (2019). https://doi.org/10.35940/ijitee.F1010.0486S419

    Article  Google Scholar 

  40. Al-Madani, B., Orujov, F., Maskeliūnas, R., Damaševičius, R., Venčkauskas, A.: Fuzzy logic type-2 based wireless indoor localization system for navigation of visually impaired people in buildings. Sensors 19(9), 2114 (2019). https://doi.org/10.3390/S19092114

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Aleixo, P.: Object detection and recognition for robotic applications (2019)

  42. Bharti, R., Bhadane, K., Bhadane, P., Gadhe, A.: IRJET-object detection and recognition for blind assistance. IRJET J. 6(5), 7085–7087 (2019)

    Google Scholar 

  43. Botre, M. R., Askhedkar, A. R.: LiFi and voice based indoor navigation system for visually impaired people. In: 2019 IEEE Pune Section International Conference, PuneCon 2019 (2019). https://doi.org/10.1109/PUNECON46936.2019.9105828

  44. Karabtcev, S. N., Khorosheva, T. A., Kapkov, N. R.: BLE beacon interaction module and mobile application in the indoor-navigation system. In: 2019 International Science and Technology Conference “EastConf”, EastConf 2019, pp. 1–2 (2019). https://doi.org/10.1109/Eastonf.2019.8725420

  45. Kundu, R.: A single camera based localization and navigation assistance for the visually impaired in indoor environments (2019). http://rave.ohiolink.edu/etdc/view?acc_num=osu154593040067708

  46. Kushnir, V., Koman, B., Yuzevych, V.: IoT image recognition system implementation for blind peoples using esp32, Mobile phone and convolutional neural network. In: 2019 11th International Scientific and Practical Conference on Electronics and Information Technologies, ELIT 2019—Proceedings, pp. 183–187 (2019). https://doi.org/10.1109/ELIT.2019.8892289

  47. Leng, L. B., Smitha, K. G., Sinha, S.: Smart nation: Indoor navigation for the visually impaired. In: 4th International Conference on Intelligent Transportation Engineering, ICITE 2019, pp. 147–151 (2019). https://doi.org/10.1109/ICITE.2019.8880228

  48. Li, B., Munoz, J.P., Rong, X., Chen, Q., **ao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Trans. Mob. Comput. 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751

    Article  PubMed  Google Scholar 

  49. Long, N., Wang, K., Cheng, R., Hu, W., Yang, K.: Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired. Rev. Sci. Instrum. 90(4), 044102 (2019). https://doi.org/10.1063/1.5093279

    Article  ADS  PubMed  CAS  Google Scholar 

  50. Mariya, A. I., Ettiyil, A. G., George, A., Nisha, S., Joseph, I. T.: Li–Fi based blind indoor navigation system. In: 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, pp. 675–677 (2019). https://doi.org/10.1109/ICACCS.2019.8728476

  51. Meshram, V.V., Patil, K., Meshram, V.A., Shu, F.C.: An astute assistive device for mobility and object recognition for visually impaired people. IEEE Trans. Hum. Mach. Syst. 49(5), 449–460 (2019). https://doi.org/10.1109/THMS.2019.2931745

    Article  Google Scholar 

  52. Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive Mob. Comput. 57, 14–32 (2019). https://doi.org/10.1016/J.PMCJ.2019.04.003

    Article  Google Scholar 

  53. Nasreen, J., Arif, W., Shaikh, A. A., Muhammad, Y., Abdullah, M.: Object detection and narrator for visually impaired people. In: ICETAS 2019—2019 6th IEEE International Conference on Engineering, Technologies and Applied Sciences (2019). https://doi.org/10.1109/ICETAS48360.2019.9117405

  54. Nikhil, K., Sai Pavan Kalyan, I., Sagar, J., Sai Rohit, M., Nesasudha, M.: Li–Fi based smart indoor navigation system for visually impaired people. In: 2nd International Conference on Signal Processing and Communication, ICSPC 2019—Proceedings, pp. 187–192 (2019). https://doi.org/10.1109/ICSPC46172.2019.8976661

  55. Saeteng, T., Srionuan, T., Choksuchat, C., Trakulmaykee, N.: Reforming warning and obstacle detection assisting visually impaired people on mHealth. In: 2019 IEEE International Conference on Consumer Electronics—Asia, ICCE-Asia 2019, pp. 176–179 (2019). https://doi.org/10.1109/ICCE-ASIA46551.2019.8942213

  56. Sanchez-Galan, J. E., Jo, K. H., Cáceres-Hernández, D.: Stairway detection based on single camera by motion stereo for the blind and visually impaired. In: Machine Vision and Navigation, pp. 657–673 (2019). https://doi.org/10.1007/978-3-030-22587-2_20/COVER

  57. Sendra, S., Lloret, J., Romero, P., Parra, L.: Low-cost system for travel aid and obstacles detection for the visually impaired people. Lecture Notes Electr. Eng. 536, 287–304 (2019). https://doi.org/10.1007/978-981-13-6837-0_21/COVER

    Article  Google Scholar 

  58. Shahira, K. C., Tripathy, S., Lijiya, A.: Obstacle detection, depth estimation and warning system for visually impaired people. In: IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2019-Octob, pp. 863–868 (2019). https://doi.org/10.1109/TENCON.2019.8929334

  59. Tahsin, L., Nuba, N. A., Sami, M. ferdous, Afrin, S.: Dynamic object recognition and command detection for assisting blind people using image processing techniques [Brac University] (2019). http://dspace.bracu.ac.bd/xmlui/handle/10361/14070

  60. Tsuboi, Y., Shimono, T., Izumi, M., Takano, Y., Goshima, O.: Detection of obstacles and steps by a white cane device for visually impaired people. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2019-July, pp. 1491–1496 (2019). https://doi.org/10.1109/AIM.2019.8868872

  61. Afif, M., Ayachi, R., Pissaloux, E., Said, Y., Atri, M.: Indoor objects detection and recognition for an ICT mobility assistance of visually impaired people. Multimedia Tools Appl. 79(41), 31645–31662 (2020). https://doi.org/10.1007/S11042-020-09662-3

    Article  Google Scholar 

  62. Aralikatti, A., Appalla, J., Kushal, S., Naveen, G.S., Lokesh, S., Jayasri, B.S.: Real-time object detection and face recognition system to assist the visually impaired. J. Phys. Conf. Ser. 1706(1), 012149 (2020). https://doi.org/10.1088/1742-6596/1706/1/012149

    Article  Google Scholar 

  63. Berenguel-Baeta, B., Guerrero-Viu, M., Nova, A., Bermudez-Cameo, J., Perez-Yus, A., Guerrero, J. J.: Floor extraction and door detection for visually impaired guidance. In: 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, pp. 1222–1229 (2020). https://doi.org/10.1109/ICARCV50220.2020.9305464

  64. Bhole, S., Dhok, A.: Deep learning based object detection and recognition framework for the visually-impaired. In: Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, pp. 725–728 (2020). https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000135

  65. Biswas, M., Dhoom, T., Pathan, R. K., Sen Chaiti, M.: Shortest path based trained indoor smart jacket navigation system for visually impaired person. In: Proceedings of the 2020 IEEE International Conference on Smart Internet of Things, SmartIoT 2020, pp. 228–235 (2020). https://doi.org/10.1109/SMARTIOT49966.2020.00041

  66. Calabrese, B., Velázquez, R., Del-Valle-Soto, C., de Fazio, R., Giannoccaro, N.I., Visconti, P.: Solar-powered deep learning-based recognition system of daily used objects and human faces for assistance of the visually impaired. Energies 13(22), 6104 (2020). https://doi.org/10.3390/EN13226104

    Article  CAS  Google Scholar 

  67. Das, D., Saha, P., Tabassum, N.: Real time distance and mobility detection of obstacles using a smart multisensor framework for visually impaired people. In: 2020 IEEE Region 10 Symposium, TENSYMP 2020, June, pp. 590–593 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230880

  68. Ghosh, A., Al Mahmud, S. A., Uday, T. I. R., Farid, D. M.: Assistive technology for visually impaired using tensor flow object detection in raspberry Pi and coral USB accelerator. In: 2020 IEEE Region 10 Symposium, TENSYMP 2020, pp. 186–189 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230630

  69. Hussain, S. S., Durrani, D., Khan, A. A., Atta, R., Ahmed, L.: In-door obstacle detection and avoidance system for visually impaired people. In: 2020 IEEE Global Humanitarian Technology Conference, GHTC 2020 (2020). https://doi.org/10.1109/GHTC46280.2020.9342942

  70. Joshi, R.C., Yadav, S., Dutta, M.K., Travieso-Gonzalez, C.M.: Efficient multi-object detection and smart navigation using artificial intelligence for visually impaired people. Entropy 22(9), 941 (2020). https://doi.org/10.3390/e22090941

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  71. Joshi, R., Tripathi, M., Kumar, A., Gaur, M. S.: Object recognition and classification system for visually impaired. In: Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, pp. 1568–1572 (2020b). https://doi.org/10.1109/ICCSP48568.2020.9182077

  72. Koli, P., Mukadam, A., Rathod, M., Tamboli, S.: Design of an audio aid for indoor navigation for the blind. Int. J. Res. Eng. Sci. Manag. 3(7), 419–422 (2020)

    Google Scholar 

  73. Nagarajan, B., Shanmugam, V., Ananthanarayanan, V., Bagavathi Sivakumar, P.: Localization and indoor navigation for visually impaired using bluetooth low energy. Smart Innov. Syst. Technol. 141, 249–259 (2020). https://doi.org/10.1007/978-981-13-8406-6_25/COVER/

    Article  Google Scholar 

  74. Nguyen, H., Nguyen, M., Nguyen, Q., Yang, S., Le, H.:Web-based object detection and sound feedback system for visually impaired people. In: 2020 International Conference on Multimedia Analysis and Pattern Recognition, MAPR 2020 (2020). https://doi.org/10.1109/MAPR49794.2020.9237770

  75. Ouali, I., Hadj Sassi, M.S., Ben Halima, M., Wali, A.: A new architecture based AR for detection and recognition of objects and text to enhance navigation of visually impaired people. Procedia Comput. Sci. 176, 602–611 (2020). https://doi.org/10.1016/J.PROCS.2020.08.062

    Article  Google Scholar 

  76. Rahman, M.M., Islam, M.M., Ahmmed, S., Khan, S.A.: Obstacle and fall detection to guide the visually impaired people with real time monitoring. SN Comput. Sci. 1(4), 1–10 (2020). https://doi.org/10.1007/S42979-020-00231-X

    Article  Google Scholar 

  77. Reddy, K. K. S. N., Yashwanth, C., Kvs, S. H., Sai, P. A. T. V., Khetarpaul, S.:Object and currency detection with audio feedback for visually impaired. In: 2020 IEEE Region 10 Symposium, TENSYMP 2020, pp. 1152–1155 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230687

  78. Silva, C.S., Wimalaratne, P.: Context-aware assistive indoor navigation of visually impaired persons. Sens. Mater. 32(4), 1497–1509 (2020). https://doi.org/10.18494/SAM.2020.2646

    Article  Google Scholar 

  79. Tang, T., Hu, M., Li, G., Li, Q., Zhang, J., Zhou, X., Zhai, G.: Special cane with visual odometry for real-time indoor navigation of blind people. In: 2020 IEEE International Conference on Visual Communications and Image Processing, VCIP 2020, 255 (2020). https://doi.org/10.1109/VCIP49819.2020.9301782

  80. Yadav, S., Joshi, R. C., Dutta, M. K., Kiac, M., Sikora, P.:Fusion of object recognition and obstacle detection approach for assisting visually challenged person. In: 2020 43rd International Conference on Telecommunications and Signal Processing, TSP 2020, pp. 537–540 (2020). https://doi.org/10.1109/TSP49548.2020.9163434

  81. Zhang, C.: ScholarWorks @ UMass Amherst Perception System: Object and Landmark Detection for Visually Impaired Users. University of Massachusetts Amherst (2020)

  82. Zhang, H., Ye, C.: A visual positioning system for indoor blind navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 9079–9085 (2020). https://doi.org/10.1109/ICRA40945.2020.9196782

  83. Barontini, F., Catalano, M.G., Pallottino, L., Leporini, B., Bianchi, M.: Integrating wearable haptics and obstacle avoidance for the visually impaired in indoor navigation: a user-centered approach. IEEE Trans. Haptics 14(1), 109–122 (2021). https://doi.org/10.1109/TOH.2020.2996748

    Article  PubMed  Google Scholar 

  84. Baseer, K. K., Pasha M., J., Albert D., W., Sujatha, V.: Navigation and obstacle detection for visually impaired people. In: Proceedings of the 4th International Conference on Microelectronics, Signals and Systems, ICMSS 2021 (2021). https://doi.org/10.1109/ICMSS53060.2021.9673618

  85. Chan, T. C., Io, H. W., Fong, C. P.: Indoor navigation system for visually impaired using UHF RFID (2021). http://oaps.umac.mo/handle/10692.1/253

  86. Davanthapuram, S., Yu, X., Saniie, J.: Visually impaired indoor navigation using YOLO based object recognition, monocular depth estimation and binaural sounds. In: IEEE International Conference on Electro Information Technology, 2021-May, pp. 173–177 (2021). https://doi.org/10.1109/EIT51626.2021.9491913

  87. Gaikwad, A., Gohokar, V.V., Kute, R., Paranjape, B.: Stair detection and classification using deep neural network for the visually impaired. Nveo-Nat. Volatiles Essent. Oils J. NVEO 8(5), 8312–8321 (2021)

    Google Scholar 

  88. Hasan, M. M., Alam, K., Alam, M. R., Sajeeb, M. N., Ankhi, A. A., Hafiz, R.: Automatic detection and recognition of object to help visually impaired people whilst visiting liberation war museum in Bangladesh. In: 2021 5th International Conference on Electrical Engineering and Information and Communication Technology, ICEEICT 2021 (2021). https://doi.org/10.1109/ICEEICT53905.2021.9667918

  89. Kahraman, M., Turhan, C.: An intelligent indoor guidance and navigation system for the visually impaired. Assist. Technol. 00(00), 1–9 (2021). https://doi.org/10.1080/10400435.2021.1872738

    Article  CAS  Google Scholar 

  90. Kuriakose, B., Shrestha, R., Sandnes, F. E.:SceneRecog: a deep learning scene recognition model for assisting blind and visually impaired navigate using smartphones. In: Conference Proceedings—IEEE International Conference on Systems, Man and Cybernetics, pp. 2464–2470 (2021). https://doi.org/10.1109/SMC52423.2021.9658913

  91. Mahadevaswamy, U. B., Aashritha, D., Joshi, N. S., Naina Gowda, K. N., Syed Asif, M. N.: Indoor navigation assistant for visually impaired (INAVI). In: Lecture Notes in Electrical Engineering, 733 LNEE, pp. 239–253 (2021). https://doi.org/10.1007/978-981-33-4909-4_17/COVER

  92. Megeshwari, S., Praveena, S., Sujitha, J., Dharshini, P.: Smart blind people navigation system with object detection and classification. Ann. Rom. Soc. Cell Biol. 25(4), 3327–3334 (2021)

    Google Scholar 

  93. Shewale, A., Mahakalkar, M., Pawar, V.: Object detection and recognition device for blind people using deep learning. Int. Res. J. Mod. Eng. Technol. Sci. 6(1), 492–498 (2021)

    Google Scholar 

  94. Vorapatratorn, S., Suchato, A., Punyabukkana, P.: Fast obstacle detection system for the blind using depth image and machine learning. Eng. Appl. Sci. Res. 48(5), 593–603 (2021). https://doi.org/10.14456/easr.2021.61

    Article  Google Scholar 

  95. Yang, C.M., Jung, J.Y., Kim, J.J.: Development of walking assistive cane for obstacle detection and location recognition for visually impaired people. Sens. Mater. 33(10), 3623–3633 (2021). https://doi.org/10.18494/SAM.2021.3452

    Article  Google Scholar 

  96. Zhang, Y., Chen, H., Yang, K., Zhang, J., Stiefelhagen, R.: Perception framework through real-time semantic segmentation and scene recognition on a wearable system for the visually impaired. In: 2021 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2021, pp. 863–868 (2021). https://doi.org/10.1109/RCAR52367.2021.9517086

  97. Ashiq, F., Asif, M., Ahmad, M.B., Zafar, S., Masood, K., Mahmood, T., Mahmood, M.T., Lee, I.H.: CNN-based object recognition and tracking system to assist visually impaired people. IEEE Access 10, 14819–14834 (2022). https://doi.org/10.1109/ACCESS.2022.3148036

    Article  Google Scholar 

  98. Chen, S., Yu, Z., Qi, Z., Wang, W.: An efficient and real-time emergency exit detection technology for the visually impaired people based on YOLOv5. In: 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms, EEBDA 2022, pp. 1280–1284 (2022). https://doi.org/10.1109/EEBDA53927.2022.9744994

  99. Fraga, A. L., Yu, X., Yi, W., Saniie, J.: Indoor navigation system for visually impaired people using computer vision, pp. 2–5 (2022)

  100. Hou, X., Zhao, H., Wang, C., Liu, H.: Knowledge driven indoor object-goal navigation aid for visually impaired people. Cognit. Comput. Syst. (2022). https://doi.org/10.1049/CCS2.12061

    Article  Google Scholar 

  101. Macias-Garcia, E., Galeana-Pérez, D., Farias-Moreno, V., Bayro-Corrochano, E.: Banknote and obstacle detection system for visually impaired people. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 11(1), 121–133 (2022). https://doi.org/10.1080/21681163.2022.2058417

    Article  Google Scholar 

  102. Masud, U., Saeed, T., Malaikah, H.M., Islam, F.U., Abbas, G.: Smart assistive system for visually impaired people obstruction avoidance through object detection and classification. IEEE Access 10, 13428–13441 (2022). https://doi.org/10.1109/ACCESS.2022.3146320

    Article  Google Scholar 

  103. Nair, V., Olmschenk, G., Seiple, W.H., Zhu, Z.: ASSIST: Evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people. Assist. Technol. 34(3), 289–299 (2022). https://doi.org/10.1080/10400435.2020.1809553

    Article  PubMed  Google Scholar 

  104. Ou, W., Zhang, J., Peng, K., Yang, K., Jaworek, G., Müller, K., Stiefelhagen, R.: Indoor navigation assistance for visually impaired people via dynamic SLAM and panoptic segmentation with an RGB-D sensor (2022). https://doi.org/10.48550/arxiv.2204.01154

  105. Suman, S., Mishra, S., Sahoo, K.S., Nayyar, A.: Vision navigator: a smart and intelligent obstacle recognition model for visually impaired users. Mobile Inf. Syst. (2022). https://doi.org/10.1155/2022/9715891

    Article  Google Scholar 

  106. Tomy, M., Nair, J., & Thomas, E. J.: Smart AI Assistant with object detection and voice feedback capability for blind Smart AI Assistant with object detection and voice feedback capability for blind. May (2022). https://doi.org/10.13140/RG.2.2.22775.50080

  107. Khan, I., Khusro, S., Ullah, I.: Technology-assisted white cane: evaluation and future directions. PeerJ 2018(12), e6058 (2018). https://doi.org/10.7717/peerj.6058

    Article  Google Scholar 

  108. Kathiravan, M.: A survey on assistive technology for visually impaired. Internet of Things 11, 100188 (2020). https://doi.org/10.1016/j.iot.2020.100188

    Article  Google Scholar 

  109. Kunhoth, J., Karkar, A.G., Al-Maadeed, S., Al-Ali, A.: Indoor positioning and wayfinding systems: a survey. Hum. Centric Comput. Inf. Sci. 10(1), 1–41 (2020). https://doi.org/10.1186/s13673-020-00222-0

    Article  Google Scholar 

  110. Paiva, S., Gupta, N.: Technologies and systems to improve mobility of visually impaired people: a state of the art. EAI/Springer Innov. Commun. Comput. (2020). https://doi.org/10.1007/978-3-030-16450-8_5

    Article  Google Scholar 

  111. Romlay, M.R.M., Toha, S.F., Ibrahim, A.M., Venkat, I.: Methodologies and evaluation of electronic travel aids for the visually impaired people: a review. Bull. Electr. Eng. and Inform. 10(3), 1747–1758 (2021)

    Article  Google Scholar 

  112. Plikynas, D.:Navigation for Blind People : Technological Instrumentation. 01, 22–32 (2020)

  113. Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: a survey. Interact. Comput. 25(1), 21–33 (2013). https://doi.org/10.1093/iwc/iws010

    Article  Google Scholar 

  114. El-Taher, F.E.Z., Taha, A., Courtney, J., McKeever, S.: A systematic review of urban navigation systems for visually impaired people. Sensors 21(9), 1–35 (2021). https://doi.org/10.3390/s21093103

    Article  Google Scholar 

  115. Patel, S., Patil, S., Uttekar, P., Chandran, D.: Indoor navigation for blind using BLE beacon. IRJET J. 7(4), 3175–3178 (2020)

    Google Scholar 

  116. Prandi, C., Delnevo, G., Salomoni, P., Mirri, S.: On supporting university communities in indoor wayfinding: an inclusive design approach. Sensors 21(9), 1–23 (2021). https://doi.org/10.3390/s21093134

    Article  Google Scholar 

  117. Pascale, F., Adinolfi, E.A., Avagliano, M., Giannella, V., Salas, A.: A low energy iot application using beacon for indoor localization. Appl. Sci. 11(11), 4902 (2021). https://doi.org/10.3390/app11114902

    Article  CAS  Google Scholar 

  118. Alnafessah, A., Al-Ammar, M., Al-Hadhrami, S., Al-Salman, A., Al-Khalifa, H.: Develo** an ultra wideband indoor navigation system for visually impaired people. Int. J. Distrib. Sens. Netw. 12(7), 6152342 (2016). https://doi.org/10.1177/155014776152342

    Article  Google Scholar 

  119. Delnevo, G., Monti, L., Vignola, F., Salomoni, P., & Mirri, S.: AlmaWhere: a prototype of accessible indoor wayfinding and navigation system. In: CCNC 2018—2018 15th IEEE Annual Consumer Communications and Networking Conference, 2018-Janua, 1–6 (2018). https://doi.org/10.1109/CCNC.2018.8319242

  120. Lin, B.S., Lee, C.C., Chiang, P.Y.: Simple smartphone-based guiding system for visually impaired people. Sensors 17(6), 1371 (2017). https://doi.org/10.3390/s17061371

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Chang, W.J., Chen, L.B., Chen, M.C., Su, J.P., Sie, C.Y., Yang, C.H.: Design and implementation of an intelligent assistive system for visually impaired people for aerial obstacle avoidance and fall detection. IEEE Sens. J. 20(17), 10199–10210 (2020). https://doi.org/10.1109/JSEN.2020.2990609

    Article  ADS  Google Scholar 

  122. Hsieh, Y.Z., Lin, S.S., Xu, F.X.: Development of a wearable guide device based on convolutional neural network for blind or visually impaired persons. Multimedia Tools Appl. 79(39–40), 29473–29491 (2020). https://doi.org/10.1007/s11042-020-09464-7

    Article  Google Scholar 

  123. Messaoudi, M.D., Menelas, B.-A.J., Mcheick, H.: Autonomous smart white cane navigation system for indoor usage. Technologies 8(3), 37 (2020). https://doi.org/10.3390/technologies8030037

    Article  Google Scholar 

  124. Najafzade, A.: AI for better integration of people with disabilities (Visual impairment). Master’s Thesis. School of Information Technologies, Tallinn University of Twchnology (2020). https://digikogu.taltech.ee/en/Download/635169ab-6a54-4c4b-8f99-1a6c690eb31f

  125. Singh, B., Kapoor, M.: Assistive cane for visually impaired persons for uneven surface detection with orientation restraint sensing. Sens. Rev. 40(6), 687–698 (2020). https://doi.org/10.1108/SR-04-2020-0097

    Article  Google Scholar 

  126. Srinivas, K., Sahithya, K., Lakshmi Tejaswi, G., Hari Gopal, K., Pavan Karthik, B.: A new method for recognition and obstacle detection for visually challenged using smart glasses powered with raspberry Pi. Int. J. Eng. Appl. Sci. Technol. 5(1), 408–412 (2020)

    Google Scholar 

  127. Chaudary, B., Pohjolainen, S., Aziz, S., Arhippainen, L., Pulli, P.: Teleguidance-based remote navigation assistance for visually impaired and blind people—usability and user experience. Virtual Reality (2021). https://doi.org/10.1007/s10055-021-00536-z

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kumbhar, A., Pathan, S., Thorat, D., Punyarthi, O.: Assistance and navigation application for visually impaired people using Android. Int. J. Res. Trends Innov. 6(6), 33–35 (2021)

    Google Scholar 

  129. Cheraghi, S. A., Namboodiri, V., Walker, L.: GuideBeacon: Beacon-based indoor wayfinding for the blind, visually impaired, and disoriented. In: 2017 IEEE International Conference on Pervasive Computing and Communications, PerCom 2017, pp. 121–130 (2017). https://doi.org/10.1109/PERCOM.2017.7917858

  130. Croce, D., Giarré, L., Pascucci, F., Tinnirello, I., Galioto, G.E., Garlisi, D., Lo Valvo, A.: An indoor and outdoor navigation system for visually impaired people. IEEE Access 7, 170406–170418 (2019). https://doi.org/10.1109/ACCESS.2019.2955046

    Article  Google Scholar 

  131. Choudhary, S., Bhatia, V., Ramkumar, K. R.: IoT based navigation system for visually impaired people. In: ICRITO 2020—IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), pp. 521–525 (2020). https://doi.org/10.1109/ICRITO48877.2020.9197857

  132. Von Zabiensky, F., Bienhaus, D.: A framework for electronic travel AIDS. In: CHIRA 2017—Proceedings of the International Conference on Computer-Human Interaction Research and Applications, Chira, pp. 172–177 (2017). https://doi.org/10.5220/0006514701720177

  133. Bleau, M., Paré, S., Djerourou, I., Chebat, D.R., Kupers, R., Ptito, M.: Blindness and the reliability of downwards sensors to avoid obstacles: a study with the eyecane. Sensors 21(8), 1–14 (2021). https://doi.org/10.3390/s21082700

    Article  Google Scholar 

  134. Ferdelman, K.: Using computer vision to aid navigation for people with visual impairements. Department of Human Media Interaction, University of Twente (2021). http://essay.utwente.nl/87769/1/Ferdelman_BA_EEMCS.pdf

  135. Budrionis, A., Plikynas, D., Daniušis, P., Indrulionis, A.: Smartphone-based computer vision travelling aids for blind and visually impaired individuals: a systematic review. Assist. Technol. (2020). https://doi.org/10.1080/10400435.2020.1743381

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Dr In-Ju Kim originally initiated the research by writing the draft of the results and discussion.

Corresponding author

Correspondence to In-Ju Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests; the results have been analysed based on the participants’ responses.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IJ. Recent advancements in indoor electronic travel aids for the blind or visually impaired: a comprehensive review of technologies and implementations. Univ Access Inf Soc (2024). https://doi.org/10.1007/s10209-023-01086-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10209-023-01086-8

Keywords

Navigation