Log in

Chapter 3: Management of kidney injury caused by cancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022

  • Special Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Cisplatin should be administered with diuretics and Magnesium supplementation under adequate hydration to avoid renal impairment. Patients should be evaluated for eGFR (estimated glomerular filtration rate) during the treatment with pemetrexed, as kidney injury has been reported. Pemetrexed should be administered with caution in patients with a CCr (creatinine clearance) < 45 mL/min. Mesna is used to prevent hemorrhagic cystitis in patients receiving ifosfamide. Febuxostat is effective in avoiding hyperuricemia induced by TLS (tumor lysis syndrome). Preventative rasburicase is recommended in high-risk cases of TLS. Thrombotic microangiopathy could be triggered by anticancer drugs and there is no evidence of efficacy of plasma exchange therapy. When proteinuria occurs during treatment with anti-angiogenic agents or multi-kinase inhibitors, dose reductions or interruptions based on grading should be considered. Grade 3 proteinuria and renal dysfunction require urgent intervention, including drug interruption or withdrawal, and referral to a nephrologist should be considered. The first-line drugs used for blood pressure elevation due to anti-angiogenic agents are ACE (angiotensin-converting enzyme) inhibitors and ARBs (angiotensin receptor blockers). The protein binding of drugs and their pharmacokinetics are considerably altered in patients with hypoalbuminemia. The clearance of rituximab is increased in patients with proteinuria, and the correlation with urinary IgG suggests similar pharmacokinetic changes when using other antibody drugs. AIN (acute interstitial nephritis) is the most common cause of ICI (immune checkpoint inhibitor)-related kidney injury that is often treated with steroids. The need for renal biopsy in patients with kidney injury that occurs during treatment with ICI remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yanagita M (2023) Clinical questions and good practice statements in clinical practice guidelines for management of kidney injury during anticancer drug therapy 2022 (manuscript in submission)

  2. (2021) Nippon Kayaku Co., Ltd. Full prescribing information for Randa® (in Japanese). https://mink.nipponkayaku.co.jp/product/di/te_file/sedi_rani_te.pdf

  3. (2015) The Japan Lung Cancer Society, and Japanese Society of Medical Oncology, guideline for short hydration method in cisplatin administration, Aug 2015, [Japanese], https://www.haigan.gr.jp/uploads/files/photos/1022.pdf

  4. Sasaki Y, Tamura T, Eguchi K et al (1989) Pharmacokinetics of (glycolate-0,0’)-diammine platinum(II), a new platinum derivative, in comparison with cisplatin and carboplatin. Cancer Chemother Pharmacol 23:243–246

    Article  CAS  PubMed  Google Scholar 

  5. Filipski KK, Mathijssen RH, Mikkelsen TS et al (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402

    Article  CAS  PubMed  Google Scholar 

  6. Miller RP, Tadagavadi RK, Ramesh G et al (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2:2490–2518

    Article  CAS  PubMed  Google Scholar 

  7. Horiuchi M, Inuyama Y, Kohno N et al (1982) Pharmacokinetics of Cis-dichlorodiammineplatinum (II) [Japanese]. Jpn J Cancer Chemother 9:632–637

    CAS  Google Scholar 

  8. Erdlenbruch B, Pekrum A, Roth C et al (2001) Cisplatin nephrotoxicity in children after continuous 72-h and 3x1-h infusions. Pediatr Nephrol 16:586–593

    Article  CAS  PubMed  Google Scholar 

  9. Lajer H, Daugaard G (1999) Cisplatin and hypomagnesemia. Cancer Treat Rev 25:47–58

    Article  CAS  PubMed  Google Scholar 

  10. Yokoo K, Murakami R, Matsuzaki T et al (2009) Enhanced renal accumulation of cisplatin via renal organic cation transporter deteriorates acute kidney injury in hypomagnesemic rats. Clin Exp Nephrol 13:578–584

    Article  CAS  PubMed  Google Scholar 

  11. Bodnar L, Wcislo G, Gasowska-Bodnar A et al (2008) Renal protection with magnesium subcarbonate and magnesium sulphate in patients with epithelial ovarian cancer after cisplatin and paclitaxel chemotherapy: a randomised phase II study. Eur J Cancer 44:2608–2614

    Article  CAS  PubMed  Google Scholar 

  12. Mita AC, Sweeney CJ, Baker SD et al (2006) Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J Clin Oncol 24:552–562

    Article  CAS  PubMed  Google Scholar 

  13. Visser S, Huisbrink J, van’t Veer NE et al (2018) Renal impairment during pemetrexed maintenance in patients with advanced nonsmall cell lung cancer: a cohort study. Eur Respir J 52:1800884

    Article  PubMed  Google Scholar 

  14. de Rouw N, Boosman RJ, van de Bruinhorst H et al (2020) Cumulative pemetrexed dose increases the risk of nephrotoxicity. Lung Cancer 146:30–35

    Article  PubMed  Google Scholar 

  15. Kawazoe H, Yano A, Ishida Y et al (2017) Non-steroidal anti-inflammatory drugs induce severe hematologic toxicities in lung cancer patients receiving pemetrexed plus carboplatin: A retrospective cohort study. PLoS ONE 12:e0171066

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nissim I, Horyn O, Daikhin Y et al (2006) Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res 66:7824–7831

    Article  CAS  PubMed  Google Scholar 

  17. (2022) Shionogi & Co., Ltd. Interview Form for Ifomide® for Injection (in Japanese): https://www.shionogi.co.jp/med/download.php?h=0a54bf01fc13dae9174a669b0dbf1cee

  18. Rossi R, Gödde A, Kleinebrand A et al (1994) Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 12:159–165

    Article  CAS  PubMed  Google Scholar 

  19. Pratt CB, Meyer WH, Jenkins JJ et al (1991) Ifosfamide, Fanconi’s syndrome, and rickets. J Clin Oncol 9:1495–1499

    Article  CAS  PubMed  Google Scholar 

  20. Skinner R, Cotterill SJ, Stevens MC (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer 82:1636–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cairo MS, Coiffier B, Reiter A et al (2010) Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 149:578–586

    Article  CAS  PubMed  Google Scholar 

  22. Spina M, Nagy Z, Ribera JM et al (2015) FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients with hematologic malignancies at intermediate to high TLS risk. Ann Oncol 26:2155–2161

    Article  CAS  PubMed  Google Scholar 

  23. Tamura K, Kawai Y, Kiguchi T et al (2016) Efficacy and safety of febuxostat for prevention of tumor lysis syndrome in patients with malignant tumors receiving chemotherapy: a phase III, randomized, multi-center trial comparing febuxostat and allopurinol. Int J Clin Oncol 21:996–1003

    Article  CAS  PubMed  Google Scholar 

  24. Bellos I, Kontzoglou K, Psyrri A et al (2019) Febuxostat administration for the prevention of tumour lysis syndrome: a meta-analysis. J Clin Pharm Ther 44:525–533

    CAS  PubMed  Google Scholar 

  25. Sircar D, Chatterjee S, Waikhom R et al (2015) Efficacy of febuxostat for slowing the GFR decline in patients with ckd and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 66:945–950

    Article  CAS  PubMed  Google Scholar 

  26. (2021) Japanese Society of Medical Oncology, Clinical Practice Guidelines for Tumor Lysis Syndrome [Japanese], 2nd edn. Kanehara-Shuppan Co. Ltd, Tokyo

  27. Cortes J, Moore JO, Maziarz RT et al (2010) Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone—results of a multicenter phase III study. J Clin Oncol 28:4207–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishizawa K, Ogura M, Hamaguchi M et al (2009) Safety and efficacy of rasburicase (SR29142) in a Japanese phase II study. Cancer Sci 100:357–362

    Article  CAS  PubMed  Google Scholar 

  29. Allen KC, Champlain AH, Cotliar JA et al (2015) Risk of anaphylaxis with repeated courses of rasburicase: a research on adverse drug events and reports (RADAR) project. Drug Saf 38:183–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kagami S (2015) Clinical practice of Guidelines for atypical Hemolytic Uremic Syndrome (sHUS) 2015 [Japanese]. Jpns J Nephrol 58:62–75

    Google Scholar 

  31. Padmanabhan A, Connelly-Smith L, Aqui N et al (2019) Guidelines on the Use of Therapeutic Apheresis in Clinical practice—evidence-based approach from the Writing Committee of the American Society for apheresis: the eighth special issue. J Clin Apher 34:171–354

    Article  PubMed  Google Scholar 

  32. Glezerman I, Kris MG, Miller V et al (2009) Gemcitabine nephrotoxicity and hemolytic uremic syndrome: report of 29 cases from a single institution. Clin Nephrol 71:130–139

    Article  CAS  PubMed  Google Scholar 

  33. Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703

    Article  CAS  PubMed  Google Scholar 

  34. Mir O, Ropert S, Babinet A et al (2010) Hyper-alkalinization without hyper-hydration for the prevention of high-dose methotrexate acute nephrotoxicity in patients with osteosarcoma. Cancer Chemother Pharmacol 66:1059–1063

    Article  CAS  PubMed  Google Scholar 

  35. Ramsey LB, Balis FM, O’Brien MM et al (2018) Consensus guideline for use of glucarpidase in patients with high-dose methotrexate induced acute kidney injury and delayed methotrexate clearance. Oncologist 23:52–61

    Article  CAS  PubMed  Google Scholar 

  36. (2022) Ohara Pharmaceutical Co., Ltd. Interview form for Glucarpidase (Genetical Recombination) “Megludase® for Intravenous Use 1000” [Japanese] https://www.ohara-ch.co.jp/appendix/pdf/inc07/megludase-IF.pdf

  37. Launay-Vacher V, Aapro M, De Castro Jr. G et al (2015) Renal effects of molecular targeted therapies in oncology: a review by the Cancer and the Kidney International Network (C-KIN). Ann Oncol 26:1677–1684

    Article  CAS  PubMed  Google Scholar 

  38. Muto S (2023) Chapter 1: Evaluation of kidney function in patients undergoing anticancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy. Int J Clin Oncol. https://doi.org/10.1007/s10147-023-02372-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Izzedine H, Massard C, Spano JP et al (2010) VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer 46:439–448

    Article  CAS  PubMed  Google Scholar 

  40. Zhang ZF, Wang T, Liu LH et al (2014) Risks of proteinuria associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a systematic review and meta-analysis. PLoS ONE 9:e90135

    Article  PubMed  PubMed Central  Google Scholar 

  41. (2022) Japan Clinical Oncology Group, Common Terminology Criteria for Adverse Events (CTCAE) version 5.0 [Japanese], http://www.jcog.jp/doctor/tool/CTCAEv5J_20220901_version.pdf

  42. Wu S, Kim C, Baer L et al (2010) Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol 21:1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu X, Wu S, Dahut WL et al (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49:186–193

    Article  CAS  PubMed  Google Scholar 

  44. Wu S, Keresztes RS (2011) Antiangiogenic agents for the treatment of nonsmall cell lung cancer: characterizing the molecular basis for serious adverse events. Cancer Investig 29:460–471

    CAS  Google Scholar 

  45. Eremina V, Jefferson JA, Kowalewska J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191

    Article  CAS  PubMed  Google Scholar 

  47. Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Investig 111:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bollée G, Patey N, Cazajous G et al (2009) Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 24:682–685

    Article  PubMed  Google Scholar 

  49. George BA, Zhou XJ, Toto R (2007) Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis 49:e23-29

    Article  PubMed  Google Scholar 

  50. Overkleeft EN, Goldschmeding R, van Reekum F et al (2010) Nephrotic syndrome caused by the angiogenesis inhibitor sorafenib. Ann Oncol 21:184–185

    Article  CAS  PubMed  Google Scholar 

  51. Costero O, Picazo ML, Zamora P et al (2010) Inhibition of tyrosine kinases by sunitinib associated with focal segmental glomerulosclerosis lesion in addition to thrombotic microangiopathy. Nephrol Dial Transplant 25:1001–1003

    Article  CAS  PubMed  Google Scholar 

  52. Troxell ML, Higgins JP, Kambham N (2016) Antineoplastic treatment and renal injury: an update on renal pathology due to cytotoxic and targeted therapies. Adv Anat Pathol 23:310–329

    Article  CAS  PubMed  Google Scholar 

  53. (2022) AVASTIN® (bevacizumab) package insert, Chugai Pharmaceutical Co., Ltd. 4th edition (June, 2022). https://chugai-pharm.jp/content/dam/chugai/product/ava/div/pi/doc/ava_pi.pdf

  54. Yeh J, Frieze D, Martins R et al (2010) Clinical utility of routine proteinuria evaluation in treatment decisions of patients receiving bevacizumab for metastatic solid tumors. Ann Pharmacother 44:1010–1015

    Article  CAS  PubMed  Google Scholar 

  55. Xu RH, Zhang Y, Pan H et al (2021) Efficacy and safety of weekly paclitaxel with or without ramucirumab as second-line therapy for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma (RAINBOW-Asia): a randomised, multicentre, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 6:1015–1024

    Article  PubMed  Google Scholar 

  56. Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–1173

    Article  CAS  PubMed  Google Scholar 

  57. Patel TV, Morgan JA, Demetri GD et al (2008) A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst 100:282–284

    Article  CAS  PubMed  Google Scholar 

  58. Leeaphorn N, Kue APP, Thamcharoen N et al (2014) Prevalence of cancer in membranous nephropathy: a systematic review and meta-analysis of observational studies. Am J Nephrol 40:29–35

    Article  PubMed  Google Scholar 

  59. Zhao T, Wang X, Xu T et al (2017) Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: a systematic review and comprehensive meta-analysis. Oncotarget 8:51492–51506

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamaguchi S, Murayama R, Satoh E et al (2021) Effects of tyrosine kinase inhibitors on blood pressure in patients with unresectable or advanced recurrent renal cell carcinoma-bayes-mixed treatment comparison meta-analysis. Gan To Kagaku Ryoho 48:1145–1151

    PubMed  Google Scholar 

  61. Yeh ET, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247

    Article  CAS  PubMed  Google Scholar 

  62. Rini BI, Cohen DP, Lu DR et al (2011) Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst 103:763–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801

    Article  PubMed  Google Scholar 

  64. Li M, Kroetz DL (2018) Bevacizumab-induced hypertension: clinical presentation and molecular understanding. Pharmacol Ther 182:152–160

    Article  CAS  PubMed  Google Scholar 

  65. Cameron AC, Touyz RM, Lang NN (2016) Vascular complications of cancer chemotherapy. Can J Cardiol 32:852–862

    Article  PubMed  Google Scholar 

  66. Izzedine H, Ederhy S, Goldwasser F et al (2009) Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol 20:807–815

    Article  CAS  PubMed  Google Scholar 

  67. Estrada CC, Maldonado A, Mallipattu SK (2019) Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol 30:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grenon NN (2013) Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs 17:425–433

    Article  PubMed  Google Scholar 

  69. Horsley L, Marti K, Jayson GC (2012) Is the toxicity of anti-angiogenic drugs predictive of outcome? A review of hypertension and proteinuria as biomarkers of response to anti-angiogenic therapy. Expert Opin Drug Metab Toxicol 8:283–293

    Article  CAS  PubMed  Google Scholar 

  70. Sorich MJ, Rowland A, Kichenadasse G et al (2016) Risk factors of proteinuria in renal cell carcinoma patients treated with VEGF inhibitors: a secondary analysis of pooled clinical trial data. Br J Cancer 114:1313–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baek SH, Kim H, Lee J et al (2014) Renal adverse effects of sunitinib and its clinical significance: a single-center experience in Korea. Korean J Intern Med 29:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feliu J, Salud A, Safont MJ et al (2015) Correlation of hypertension and proteinuria with outcome in elderly bevacizumab-treated patients with metastatic colorectal cancer. PLoS ONE 10:e0116527

    Article  PubMed  PubMed Central  Google Scholar 

  73. Izzedine H, Perazella MA (2015) Thrombotic microangiopathy, cancer, and cancer drugs. Am J Kidney Dis 66:857–868

    Article  CAS  PubMed  Google Scholar 

  74. Izzedine H, Mangier M, Ory V et al (2014) Expression patterns of RelA and c-mip are associated with different glomerular diseases following anti-VEGF therapy. Kidney Int 85:457–470

    Article  CAS  PubMed  Google Scholar 

  75. Izzedine H, Escudier B, Lhomme C et al (2014) Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine (Baltimore) 93:333–339

    Article  CAS  PubMed  Google Scholar 

  76. Gugler R, Shoeman DW, Huffman DH et al (1975) Pharmacokinetics of drugs in patients with the nephrotic syndrome. J Clin Investig 55:1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reiss SN, Buie LW, Adel N et al (2016) Hypoalbuminemia is significantly associated with increased clearance time of high dose methotrexate in patients being treated for lymphoma or leukemia. Ann Hematol 95:2009–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arrieta O, Michel Ortega RM, Villanueva-Rodríguez G et al (2010) Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study. BMC Cancer 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  79. Murdock JL, Duco MR, Reeves DJ (2021) Tolerability of highly protein bound targeted oral oncolytic drugs in patients with hypoalbuminemia: a retrospective analysis. Ann Pharmacother 55:165–173

    Article  CAS  PubMed  Google Scholar 

  80. McLean TW, Stewart RM, Curley TP et al (2020) Hypoalbuminemia in children with cancer treated with chemotherapy. Pediatr Blood Cancer 67:e28065

    Article  PubMed  Google Scholar 

  81. Takeuchi T, Miyasaka N, Inoue K et al (2009) Impact of trough serum level on radiographic and clinical response to infliximab plus methotrexate in patients with rheumatoid arthritis: results from the RISING study. Mod Rheumatol 19:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tout M, Casasnovas O, Meignan M et al (2017) Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood 129:2616–2623

    Article  CAS  PubMed  Google Scholar 

  83. Tabernero J, Ohtsu A, Muro K et al (2017) Exposure-response analyses of ramucirumab from two randomized, phase III trials of second-line treatment for advanced gastric or gastroesophageal junction cancer. Mol Cancer Ther 16:2215–2222

    Article  CAS  PubMed  Google Scholar 

  84. Fogueri U, Cheungapasitporn W, Bourne D et al (2019) Rituximab exhibits altered pharmacokinetics in patients with membranous nephropathy. Ann Pharmacother 53:357–363

    Article  CAS  PubMed  Google Scholar 

  85. Counsilman CE, Jol-van der Zijde CM, Stevens J et al (2015) Pharmacokinetics of rituximab in a pediatric patient with therapy-resistant nephrotic syndrome. Pediatr Nephrol 30:1367–1370

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stahl K, Duong M, Schwarz A et al (2017) Kinetics of rituximab excretion into urine and peritoneal fluid in two patients with nephrotic syndrome. Case Rep Nephrol 2017:1372859

    PubMed  PubMed Central  Google Scholar 

  87. Yonezawa A, Otani Y, Kitano T et al (2019) Concentration and glycoform of rituximab in plasma of patients with b cell non-Hodgkin’s lymphoma. Pharm Res 36:82

    Article  PubMed  Google Scholar 

  88. Stein C, Burtey S, Mancini J et al (2021) Acute kidney injury in patients treated with anti-programmed death receptor-1 for advanced melanoma: a real-life study in a single-centre cohort. Nephrol Dial Transplant 36:1664–1674

    Article  CAS  PubMed  Google Scholar 

  89. Seethapathy H, Zhao S, Chute DF et al (2019) The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol 14:1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meraz-Muñoz A, Amir E, Ng P et al (2020) Acute kidney injury associated with immune checkpoint inhibitor therapy: incidence, risk factors and outcomes. J Immunother Cancer 8:e000467

    Article  PubMed  PubMed Central  Google Scholar 

  91. García-Carro C, Bolufer M, Bury R et al (2022) Acute kidney injury as a risk factor for mortality in oncological patients receiving checkpoint inhibitors. Nephrol Dial Transplant 37:887–894

    PubMed  Google Scholar 

  92. Kitchlu A, Fingrut W, Avila-Casado C et al (2017) Nephrotic syndrome with cancer immunotherapies: a report of 2 cases. Am J Kidney Dis 70:581–585

    Article  PubMed  Google Scholar 

  93. Zheng K, Qiu W, Wang H et al (2020) Clinical recommendations on diagnosis and treatment of immune checkpoint inhibitor-induced renal immune-related adverse events. Thorac Cancer 11:1746–1751

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cortazar FB, Marrone KA, Troxell ML et al (2016) Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 90:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cortazar FB, Kibbelaar ZA, Glezerman IG et al (2020) Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study. J Am Soc Nephrol 31:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Perazella MA, Shirali AC (2018) Nephrotoxicity of cancer immunotherapies: past, present and future. J Am Soc Nephrol 29:2039–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perazella MA, Shirali AC (2020) Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int 97:62–74

    Article  CAS  PubMed  Google Scholar 

  98. Sury K, Perazella MA, Shirali AC (2018) Cardiorenal complications of immune checkpoint inhibitors. Nat Rev Nephrol 14:571–588

    Article  CAS  PubMed  Google Scholar 

  99. Cassol C, Satoskar A, Lozanski G et al (2019) Anti-PD-1 immunotherapy may induce interstitial nephritis with increased tubular epithelial expression of PD-L1. Kidney Int Rep 4:1152–1160

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fadel F, El Karoui K, Knebelmann B (2009) Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361:211–212

    Article  CAS  PubMed  Google Scholar 

  101. Mamlouk O, Selamet U, Machado S et al (2019) Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. J Immunother Cancer 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kishi S, Minato M, Saijo A et al (2018) IgA nephropathy after nivolumab therapy for postoperative recurrence of lung squamous cell carcinoma. Intern Med 57:1259–1263

    Article  PubMed  Google Scholar 

  103. Mo H, Yau D, Mirshahidi H et al (2020) AA amyloidosis associated with pulmonary squamous cell carcinoma treated with chemoradiation and immune checkpoint inhibitor therapy. Pathol Int 70:303–305

    Article  PubMed  Google Scholar 

  104. Kitchlu A, Jhaveri KD, Wadhwani S et al (2021) A systematic review of immune checkpoint inhibitor-associated glomerular disease. Kidney Int Rep 6:66–77

    Article  PubMed  Google Scholar 

  105. Espi M, Teuma C, Novel-Catin E et al (2021) Renal adverse effects of immune checkpoints inhibitors in clinical practice: ImmuNoTox study. Eur J Cancer 147:29–39

    Article  CAS  PubMed  Google Scholar 

  106. Wanchoo R, Karam S, Uppal NN et al (2017) Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol 45:160–169

    Article  CAS  PubMed  Google Scholar 

  107. Sise ME, Seethapathy H, Reynolds KL (2019) Diagnosis and management of immune checkpoint inhibitor-associated renal toxicity: illustrative case and review. Oncologist 24:735–742

    Article  PubMed  PubMed Central  Google Scholar 

  108. Robert C (2020) A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 11:3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li H, Xu J, Bai Y et al (2021) Nephrotoxicity in patients with solid tumors treated with anti-PD-1/PD-L1 monoclonal antibodies: a systematic review and meta-analysis. Investig New Drugs 39:860–870

    Article  CAS  Google Scholar 

  110. Perazella MA, Sprangers B (2019) AKI in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol 14:1077–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gupta S, Cortazar FB, Riella LV et al (2020) Immune checkpoint inhibitor nephrotoxicity: update 2020. Kidney360 1:130–140

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ubara Y, Kawaguchi T, Nagasawa T et al (2021) Kidney biopsy guidebook 2020 in Japan. Clin Exp Nephrol 25:325–364

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schneider BJ, Naidoo J, Santomasso BD et al (2021) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol 39:4073–4126

    Article  CAS  PubMed  Google Scholar 

  114. Horvat TZ, Adel NG, Dang TO et al (2015) Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol 33:3193–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schadendorf D, Wolchok JD, Hodi FS et al (2017) Efficacy and Safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J Clin Oncol 35:3807–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168

    Article  CAS  PubMed  Google Scholar 

  117. Oleas D, Bolufer M, Agraz I et al (2021) Acute interstitial nephritis associated with immune checkpoint inhibitors: a single-centre experience. Clin Kidney J 14:1364–1370

    Article  CAS  PubMed  Google Scholar 

  118. Osa A et al (2018) Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI. Insight. 3:e59125

    Google Scholar 

  119. Lapman S, Whittier WL, Parikh R et al (2020) Immune checkpoint inhibitor-associated renal amyloid A amyloidosis: a case series and review of the literature. J Onco-Nephrol 4:52–58

    Article  Google Scholar 

Download references

Acknowledgements

This article is the secondary publication from the Japanese version by the Japanese Society of Nephrology (JSN), Japan Society of Clinical Oncology (JSCO), Japanese Society of Medical Oncology (JSMO), and The Japanese Society of Nephrology and Pharmacotherapy (JSNP) that was published Lifescience publishers Co Ltd, Tokyo, Japan, with permission. We greatly thank other guideline committee members for peer reviews and external review teams from JSN, JSCO, JSMO, JSNP, and the Japanese Society for Dialysis Therapy for their suggestive advice and cooperation. We also thank Toshio Morizane (Japan Council for Quality Health Care), Takeo Nakayama (Department of Health Informatics, School of Public Health, Kyoto University Graduate School of Medicine), and Shigeo Horie (Department of Urology, Juntendo University Faculty of Medicine) for an advisor, Naoki Kashihara (Kawasaki Medical School), Mototsugu Oya (Keio University School of Medicine), Hirokazu Okada (Saitama Medical University), and Masaomi Nangaku (The University of Tokyo) for supervisors of the guideline, Takashi Yokoo (JSN academic committee chairman, Jikei University School of Medicine) and Kengo Furuichi (JSN academic committee vice chairman, Kanazawa Medical University School of Medicine) for observers, Eiichiro Kanda (Kawasaki Medical School) and Takaaki Suzuki (Nara Medical University Library) for systematic literature searching, Hitoshi Watanabe (Lifescience, Co. Ltd.) for editing the Japanese version of the guidelines, office staffs of JSN, JSCO, JSMO, and JSNP, and Yasuhiro Komatsu (Gunma University) for helpful supports.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yuichi Ando.

Ethics declarations

Conflict of interest

Y.A has received honoraria from Chugai Pharmaceutical Co., Ltd., Bayer Holding Ltd., and research funding from Chugai Pharmaceutical Co., Ltd., Geo Holdings Corporation, and BeiGene, Ltd. H.N has received honoraria from MSD K.K., Astellas pharma Inc., and Merck Biopharma Co., Ltd., research fundings from Chugai Pharmaceutical Co. Ltd., and a scholarship donation from Bayer AG. E.S has received honoraria from Pfizer Japan Inc., Bristol-Myers Squibb Company, Takeda Pharmaceutical Company Limited, Novartis Pharmaceuticals Corporation, and Janssen Pharmaceutical K.K. K.M has received honoraria from MSD, Kyowa Kirin Co., Ltd., and Chugai-Pharmaceutical Co., Ltd., and research fundings from DAIICHI SANKYO COMPANY, MSD, Eli Lilly Japan K.K, Gilead Sciences, and Eisai Co., Ltd. Y.F has received honoraria from AstraZeneca, Bristol-Myers Squibb Company, Chugai-Pharmaceutical Co., Ltd., DAIICHI SANKYO COMPANY, Micron, MSD, and ONO PHARMACEUTICAL CO., LTD., and research fundings from Abbvie, Amgen, AnHeart, AstraZeneca, Bristol-Myers Squibb Company, Chugai-Pharmaceutical Co., Ltd., Eli Lilly Japan K.K, Incyte, and MSD. T.K has received honoraria from Chugai, AstraZeneca and Sysmex, and research funding from PACT Pharma, Chugai, Daiichi-Sankyo, Novartis, Eli Lilly, Pfizer, Janssen Pharmaceutical K.K., Zymworks, and Takeda Pharmaceutical Company Limited. H.K has received honoraria from Astellas Pharma Inc, Takeda Pharmaceutical Company Limited, Bayer AG, and Janssen Pharmaceutical K.K., and scholarship donations from Takeda Pharmaceutical Company Limited and Bayer AG. T. K received honoraria from AstraZeneca. J.H has received honoraria from Kyowa Kirin Co., Ltd., Mitsubishi Tanabe Pharma, Ono Pharm, AstraZeneca and Astellas Pharma Inc, and a research grant from Otsuka Pharmaceutical Co., Ltd. M. Yanagita has received honoraria from Astellas Pharma Inc, AstraZeneca, Kyowa Kirin Co., Ltd., Chugai-Pharmaceutical Co., Ltd., Bayer AG, and Mitsubishi Tanabe Pharma, and research grants from Mitsubishi Tanabe Pharma, Boehringer Ingelheim International GmbH, and scholarship donations from Kyowa Kirin Co., Ltd., Chugai-Pharmaceutical Co., Ltd., and Mitsubishi Tanabe Pharma. The other authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, Y., Nishiyama, H., Shimodaira, H. et al. Chapter 3: Management of kidney injury caused by cancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol 28, 1315–1332 (2023). https://doi.org/10.1007/s10147-023-02382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02382-2

Keywords

Navigation