Log in

Ectopic expression of a grapevine alkaline α-galactosidase seed imbibition protein VvSIP enhanced salinity tolerance in transgenic tobacco plants

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Alpha-galactosidase seed imbibition protein (VvSIP) isolated from Vitis vinifera is up-regulated upon salt stress and mediates osmotic stress responses in a tolerant grapevine cultivar. So far, little is known about the putative role of this stress-responsive gene. In the present study, VvSIP function was investigated in model tobacco plants via Agrobacterium-mediated genetic transformation. Our results showed that overexpression of VvSIP exhibited increased tolerance to salinity at germination and late vegetative stage in transgenic Nicotiana benthamiana compared to the nontransgenic plants based on the measurement of the germination rate and biomass production. High salt concentrations of 200 and 400 mM NaCl in greenhouse-grown pot assay resulted in better relative water content, higher leaf osmotic potential, and leaf water potential in transgenic lines when compared to the wild-type (WT) plants. These physiological changes attributed to efficient osmotic adjustment improved plant performance and tolerance to salinity compared to the WT. Moreover, the VvSIP-expressing lines SIP1 and SIP2 showed elevated amounts of chlorophyll with lower malondialdehyde content indicating a reduced lipid peroxidation required to maintain membrane stability. When subjected to high salinity conditions, the transgenic tobacco VvSIP exhibited higher soluble sugar content, which may suggest an enhancement of the carbohydrate metabolism. Our findings indicate that the VvSIP is involved in plant salt tolerance by functioning as a positive regulator of osmotic adjustment and sugar metabolism, both of which are responsible for stress mitigation. Such a candidate gene is highly suitable to alleviate environmental stresses and thus could be a promising candidate for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not available.

References

  • Ahanger MA, Gul F, Ahmad P, Akram NA (2018) Environmental stresses and metabolomics-deciphering the role of stress responsive metabolites. In: In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant metabolites and regulation under environmental stress. Academic Press, Cambridge, pp. 53–6

  • Anderson CM, Kohorn BD (2001) Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. J Plant Physiol 158:1215–1219

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Review Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Askri H, Daldoul S, Ben-Amar A, Rejeb S, Jardak R, Rejeb MN, Mliki A, Ghorbel A (2012) Short-term response of wild grapevine (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes in some physiological and molecular characteristics. Acta Physiol Plant 34:957–968

    Article  CAS  Google Scholar 

  • Ben-Amar A, Cobanov P, Buchholz G, Mliki A, Reustle G (2013) In planta agroinfiltration system for transient gene expression in grapevine. Acta Physiol Plant 35(11):3147–3156

    Article  CAS  Google Scholar 

  • Ben-Amar A, Daldoul S, Reustle GM, Krczal G, Mliki A (2016) Reverse genetics and high throughput sequencing methodologies for plant functional genomics. In: Ben-Amar (Ed.) Advances in Plant Functional Genomics: Challenges and Applications. Curr Genomics 17(6): 460–475

  • Ben-Amar A, Mliki A (2021) Timely gene detection assay and reliable screening of genetically engineered plants using an improved direct PCR-based technology. Transgenic Res 30:263–274. https://doi.org/10.1007/s11248-021-00250-1(

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Tu W, Zu Y, Yan J, Xu Z, Lu J, Zhang Y (2017) Overexpression of a grapevine sucrose transporter (VvSUC27) in tobacco improves plant growth rate in the presence of sucrose in vitro. Front Plant Sci 8:1069. https://doi.org/10.3389/fpls.2017.01069

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Daldoul S, Ben-Amar A, Gargouri M, Limam H, Mliki A, Wetzel T (2018) A grapevine-inducible gene Vv.α-gal/SIP confers salt and desiccation tolerance in Escherichia coli and tobacco at germinative stage. Biochem Genet. https://doi.org/10.1007/s10528-017-9831-8

    Article  PubMed  Google Scholar 

  • Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Hoefer M (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498

    Article  CAS  PubMed  Google Scholar 

  • Daldoul S, Hanana M, Mliki A (2012a) Molecular characterization and in silico analysis of an alkaline a-galactosidase gene (Vv-α-gal/SIP) in grapevines (Vitis vinifera. L). Turk J Biochem 37:368–374

    Article  CAS  Google Scholar 

  • Daldoul S, Toumi I, Reustle GM, Krczal G, Ghorbel A, Mliki A, Hoefer M (2012b) Molecular cloning and characterization of cDNA encoding a putative alkaline alpha-galactosidase from grapevine (Vitis vinifera L.) that is differentially expressed under osmotic stress. Acta Physiol Plant 34(2):731–742

    Article  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 186:421–431

    Article  CAS  Google Scholar 

  • Gangi R, Tenhaken R (2016) Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark. Font Plant Sci 7:1115. https://doi.org/10.3389/fpls.2016.01115

    Article  Google Scholar 

  • Gao Z, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119(3):979–988. https://doi.org/10.1104/pp.119.3.979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Nat Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Zhang Y, Zhang M, Li T, Dirk LM, Downie B, Zhao T (2016) ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A. Plant Mol Biol 90(1–2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: Physiological, biochemical and molecular characterization. Int J Genomics 2014:ID 701796. https://doi.org/10.1155/2014/701596

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proceed Nat Acad Sci USA 110:6907–6912

    Article  CAS  Google Scholar 

  • Hara M, Tokunaga K, Kuboi T (2008) Isolation of a drought-responsive alkaline alpha-galactosidase gene from New Zealand spinach. Plant Biotechnol 25:497–501

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in study of plant nutrition. 2nd Edition England, Farnham Royal (Bucks): Commonwealth Agricultural Bureaux

  • Horsch RB, Fry JE, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14(4):6757–6789. https://doi.org/10.3390/ijms14046757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Zhang Y, Wang D, Liu Y, Dirk LMA, Goodman J, Downie AB, Wang J, Wang G, Zhao T (2017) Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana. Mol Plant 10(12):1540–1555

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ 31(9):1325–1334. https://doi.org/10.1111/j.1365-3040.2008.01838.x

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fu C, Li G, Khan MN, Wu H (2021) ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainability 13:3552. https://doi.org/10.3390/su13063552

    Article  CAS  Google Scholar 

  • Loescher W, Chan Z, Grumet R (2011) Options for develo** salt-tolerant crops. Hort Sci 46(8):1085–1092

    Google Scholar 

  • Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 8(7):e68503. https://doi.org/10.1371/journal.pone.0068503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: Bringing them together. Tansley Rev New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mushtaq R, Shahzad K, Shah ZH, Alsamadany H, Alzahrani HAS, Alzahrani Y et al (2020) Isolation of biotic stress resistance genes from cotton (Gossypium arboreum) and their analysis in model plant tobacco (Nicotiana tabacum) for resistance against cotton leaf curl disease complex. J Virol Meth 276:113760. https://doi.org/10.1016/j.jviromet.2019.113760

    Article  CAS  Google Scholar 

  • Niedbała G, Niazian M, Sabbatini P (2021) Modeling Agrobacterium-mediated gene transformation of Tobacco (Nicotiana tabacum)—A model plant for gene transformation studies. Front Plant Sci 12:695110. https://doi.org/10.3389/fpls.2021.695110

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennycooke JC, Vepachedu R, Stushnoff C, Jones ML (2004) Expression of an α-galactosidase gene in Petunia is upregulated during low-temperature deacclimation. J Amer Soc Hort Sci 129(4):491–496

    Article  CAS  Google Scholar 

  • Peters S, Egert A, Stieger B, Keller F (2010) Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-Galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern. Plant Cell Physiol 51(10):1815–1819

    Article  CAS  PubMed  Google Scholar 

  • Phogat V, Cox JW, Šimunek J (2018) Identifying the future water and salinity risks to irrigated viticulture in the MurrayDarling Basin, South Australia. Agric Water Manag 201:107–117

    Article  Google Scholar 

  • Phogat V, Pitt T, Stevens RM, Cox JW, Šimunek J, Petrie PR (2020) Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. J Hydrol 587:125000

    Article  Google Scholar 

  • Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C, Charon J, Gomès E, Keller F, Delrot S, Lecourieux D (2012) VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol 53(10):1776–1792

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Mukherjee S, Basak P, Majumder AL (2016) Significance of galactinol and raffinose family oligosaccharides in plants. Front Plant Sci 6:656

    Google Scholar 

  • Shin W, Siddikee A, Joe MM, Benson A, Kim K, Selvakumar G, Kang Y, Jeon S, Samaddar S, Chatterjee P (2016) Halotolerant plant growth promoting bacteria mediated salinity stress amelioration in plants. Kor J Soil Sci Fert 49:355–367

    Article  CAS  Google Scholar 

  • Sun Z, Qi X, Wang Z, Li P, Wu C, Zhang H, Zhao Y (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89

    Article  CAS  PubMed  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrecillas A, Leon A, Amor S, Ruiz MC (1984) Determinacion de prolina libre en discos foliares de limonero y su relacion con el potencial de xilema. Agrochimica 28:371–378 article in Spanish

    CAS  Google Scholar 

  • Yamaguchi N, Suzuki S, Makino A (2013) Starch degradation by alpha-amylase in tobacco leaves during the curing process. Plant Nutr 59(6):904–911

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao TY, Corum JW, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16(2):107–121

    Article  CAS  Google Scholar 

  • Zhou J, Yang Y, Yu J, Wang L, Yu X, Ohtani M, Kusano M, Saito K, Demura T, Zhuge Q (2014) Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J Plant Res 127(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Scientific Research and funded in part by the Tunisian German Bilateral Cooperation (BMBF/MES, Project no. TUNGER-2015–32).

Author information

Authors and Affiliations

Authors

Contributions

AB conceived and designed the study, conducted transformation experiment to generate transgenic plants, and wrote the manuscript. SD prepared the gene construct with TW. AB and SD carried out the greenhouse pot assay, physiological evaluation under salt stress and data interpretation. DA performed some physiological and biochemical assays and made statistical analysis. AB, SD, DA, TW, and AM contributed in reviewing, editing, and approving the final manuscript.

Corresponding author

Correspondence to Anis Ben-Amar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Amar, A., Daldoul, S., Allel, D. et al. Ectopic expression of a grapevine alkaline α-galactosidase seed imbibition protein VvSIP enhanced salinity tolerance in transgenic tobacco plants. Funct Integr Genomics 23, 12 (2023). https://doi.org/10.1007/s10142-022-00945-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-022-00945-6

Keywords

Navigation