Log in

Identification of lncRNAs involved in wheat tillering development in two pairs of near-isogenic lines

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Emerging evidence demonstrates that lncRNAs participate in various developmental processes in plants via post-transcription regulation. However, few lncRNAs have been identified as regulators of tiller development in wheat (Triticum aestivum L.). In this study, high-throughput ribosomal depleted RNA sequencing was performed on the tillering nodes of two pairs of near-isogenic lines that differed only in the tillering trait. We identified 5399 lncRNA transcripts using bioinformational analyses. KEGG pathway analysis revealed 74 common differentially expressed lncRNAs substantially enriched in photosynthesis-related, phenylpropanoid biosynthesis, phosphatidylinositol signaling, brassinosteroid biosynthesis, zeatin biosynthesis, and carotenoid biosynthesis pathways. Detailed functional annotations of target genes were used to identify 27 tillering-associated lncRNAs. Among these, 10 were in photosynthesis-related pathways; 15 were in secondary metabolite pathways; and 8 were in plant hormone pathways, with 6 enriched in two kinds of pathways. These findings contribute to identifying tillering-associated lncRNAs in wheat and enable further investigation into the functions and roles of key candidate lncRNAs, and more experimental evidence was also needed if breeders wanted to utilize these candidate lncRNAs in wheat crop yield improvement in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55(3):383–396

    CAS  PubMed  Google Scholar 

  • Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, Brown JWS, Crespi M (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176

    CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1997) Nuclear DNA amounts in angiosperms. Philos Trans R Soc B Biol Sci 76:113–176

    Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    CAS  PubMed  Google Scholar 

  • Budak H, Kaya SB, Cagirici HB (2020) Long non-coding RNA in plants in the era of reference sequences. Front Plant Sci 11:276

    PubMed  PubMed Central  Google Scholar 

  • Castle J, Szekeres M, Jenkins G, Bishop GJ (2005) Unique and overlap** expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol Biol 57:129–140

    CAS  PubMed  Google Scholar 

  • Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    CAS  PubMed  Google Scholar 

  • Chen CJ, Chen H, He YH et al (2018) TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv. https://doi.org/10.1101/289660

  • Deng F, Zhang XP, Wang W, Yuan R, Shen F (2018a) Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol 18:23

    PubMed  PubMed Central  Google Scholar 

  • Deng PC, Liu S, Nie XJ, Weining S, Wu L (2018b) Conservation analysis of long non-coding RNAs in plants. Life Sci 61:190–198

    CAS  Google Scholar 

  • Duggan BL, Domitruk DR, Fowler DB (2000) Yield component variation in winter wheat grown under drought stress. Can J Plant Sci 80(4):739–745

    Google Scholar 

  • Elhani S, Martos V, Rharrabti Y, Royo C, García del Moral LF (2007) Contribution of main stem and tillers to durum wheat (Triticum turgidum L.var. durum) grain yield and its components grown in Mediterranean environments. Field Crop Res 103(1):25–35

    Google Scholar 

  • Evers JB, Vos J, Chelle M, Andrieu B, Fournier C, Struik PC (2007) Simulating the effects of localized red: far-red ratio on tillering in spring wheat (Triticum aestivum) using a three-dimensional virtual plant model. New Phytol 176:325–336

    PubMed  Google Scholar 

  • Evers JB, Vos J, Yin X, Romero P, van der Putten PEL, Struik PC (2010) Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot 61(8):2203–2216

    CAS  PubMed  Google Scholar 

  • Gallart AP, Pulido AH, Lagrán LAM et al (2016) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44:D1161–D1166

    CAS  Google Scholar 

  • Gao F, Cai Y, Kapranov P, Xu D (2020) Reverse-genetics studies of lncRNAs—what we have learnt and paths forward. Genome Biol 21:93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SY, Xu YY, Liu HH et al (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1556

    Google Scholar 

  • Guo GH, Liu XY, Sun FL, Cao J, Huo N, Wuda B, **n M, Hu Z, du J, **a R, Rossi V, Peng H, Ni Z, Sun Q, Yao Y (2018) Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell 30:796–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isin M, Dalay N (2015) LncRNAs and neoplasia. Clin Chim Acta 444:280–288

    CAS  PubMed  Google Scholar 

  • Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12–W16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebrom TH, Mullet JE (2015) Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ 38:1471–1478

    CAS  PubMed  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    PubMed  PubMed Central  Google Scholar 

  • Koumoto T, Shimada H, Kusano H, She KC, Iwamoto M, Takano M (2013) Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase. Plant Biotechnol 30(1):47–56

    CAS  Google Scholar 

  • Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:93

    PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:323

    CAS  Google Scholar 

  • Li CX, Zhao GC, Dai XM et al (2000) Relationship between tillering dynamics and endogenous hormone in wheat. Plant J 6:963–968

    Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang Y, **ong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    CAS  PubMed  Google Scholar 

  • Liang Z, Ma XL (1998) Studies on the effects of endogenous hormones on tiller development process of winter wheat. Crop J 24(6):788–792

    Google Scholar 

  • Lin QB, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J (2012) Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 3:752

    PubMed  Google Scholar 

  • Lin Z, Long JM, Yin Q, Wang B, Li H, Luo J, Cassan Wang H, Wu AM (2019) Identification of novel lncRNAs in Eucalyptus grandis. Ind Crop Prod 129:309–317

    CAS  Google Scholar 

  • Liu LH, **e TT, Peng P, Qiu H, Zhao J, Fang J, Patil SB, Wang Y, Fang S, Chu J, Yuan S, Zhang W, Li X (2018) Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Plant Sci 267:1–10

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Long XY, Wang JR, Thérèse O et al (2010) Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 74(3):307–311

    CAS  PubMed  Google Scholar 

  • Lu J, Yao YD, Shi HW et al (2018) Agricultural traits related to wheat yield components and genetic correlation analysis of population yield. Shan ** Agric Sci 46(4):501–503

    Google Scholar 

  • Ma KS, Shi WS, Xu MY, Liu J, Zhang F (2018) Genome-wide identification and characterization of long non-coding RNA in wheat roots in response to Ca 2+ channel blocker. Front Plant Sci 9:244

    PubMed  PubMed Central  Google Scholar 

  • Mathy NW, Chen XM (2017) Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem 292(30):12375–12382

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMaster GS, Wilhelm WW, Bartling PNS (1994) Irrigation and culm contribution to yield and yield components of winter wheat. Agron J 86(6):1123–1127

    Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. PNAS 105(2):716–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ (2019) Classification and experimental identification of plant long non-coding RNAs. Genomics 111(5):997–1005

    CAS  PubMed  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3):368–375

    CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:45–166

    Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  • Sahu S, Rao AR, Pandey J et al (2018) Genome-wide identification and characterization of lncRNAs and miRNAs in cluster bean (Cyamopsis tetragonoloba). Gene 667:112–121

    CAS  PubMed  Google Scholar 

  • Shang XL, **e RR, Tian H, Wang QL, Guo FQ (2016) Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J Integr Plant Biol 58(7):627–641

    CAS  PubMed  Google Scholar 

  • Sharma S, Taneja M, Tyagi S et al (2017) Survey of high throughput RNA-Seq data reveals potential roles for lncRNAs during development and stress response in bread wheat. Front Plant Sci 8:1019

    PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TT, He J, Liang Q et al (2016) LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov 6(7):785–802

    Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    CAS  PubMed  Google Scholar 

  • Tong HN, ** Y, Liu WB, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816

    CAS  PubMed  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Niu QW, Wu HW, Liu J, Ye J, Yu N, Chua NH (2015a) Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J 84:404–416

    CAS  PubMed  Google Scholar 

  • Wang TZ, Liu M, Zhao MG, Chen R, Zhang WH (2015b) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131

    PubMed  PubMed Central  Google Scholar 

  • Wang ZQ, Liu YX, Shi HR, Mo H, Wu F, Lin Y, Gao S, Wang J, Wei Y, Liu C, Zheng Y (2016) Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet 129:603–612

    CAS  PubMed  Google Scholar 

  • Wang Y, Luo XJ, Sun F, Hu J, Zha X, Su W, Yang J (2018) Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat Commun 9:3516

    PubMed  PubMed Central  Google Scholar 

  • Wang ZQ, Shi HR, Yu SF, Zhou W, Li J, Liu S, Deng M, Ma J, Wei Y, Zheng Y, Liu Y (2019) Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. Theor Appl Genet 132(8):2181–2193

    CAS  PubMed  Google Scholar 

  • **a KF, Wang R, Ou XJ, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    CAS  PubMed  PubMed Central  Google Scholar 

  • **n MM, Wang Y, Yao YY, Song N, Hu Z, Qin D, **e C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Wang YH, Yu YC, Duan J, Liao Z, **ong G, Meng X, Liu G, Qian Q, Li J (2012) Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. Nat Commun 3:750

    PubMed  Google Scholar 

  • Yeh SY, Chen HW, Ng CY, Lin CY, Tseng TH, Li WH, Ku MSB (2015) Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice 8:36

    PubMed  PubMed Central  Google Scholar 

  • Yuan JP, Zhang Y, Dong JS, Sun Y, Lim BL, Liu D, Lu ZJ (2016) Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genomics 17:655

    PubMed  PubMed Central  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421

    Google Scholar 

  • Zhang YY, Zhang BC, Yan DW, Dong W, Yang W, Li Q, Zeng L, Wang J, Wang L, Hicks LM, He Z (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67:342–353

    CAS  PubMed  Google Scholar 

  • Zhang H, Chen XY, Wang CY, Xu Z, Wang Y, Liu X, Kang Z, Ji W (2013) Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.). Mol Biol Rep 40:6245–6253

    CAS  PubMed  Google Scholar 

  • Zhang W, Han ZX, Guo QL, Liu Y, Zheng Y, Wu F, ** W (2014a) Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9(6):e98958

    PubMed  PubMed Central  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014b) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Tang GJ, Peng X, Sun F, Liu S, ** Y (2018) Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biol 18:79

    PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhang M, **ng LJ, Li W, Jiang H, Wang L, Xu M (2017) Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Gene 8:274

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31771794 and 91731305), the National Key Research and Development Program of China (2016YFD0101004 and 2017YFD0100900), the outstanding Youth Foundation of the Department of Science and Technology of Sichuan Province (2016JQ0040), and the International Science and Technology Cooperation Program of the Bureau of Science and Technology of Chengdu China (No. 2015DFA306002015-GH03-00008-HZ).

Author information

Authors and Affiliations

Authors

Contributions

WLZ and HRS conducted data analysis and drafted the manuscript.

ZQW, YTZ, XJG, CXL, GDC, SHL, and MD performed the phenotypic evaluation and field sampling and helped with data analysis.

JM helped to draft the manuscript.

YLZ helped to coordinate the study.

YMW participated in the design of the study and partially revised the manuscript.

YXL designed and coordinated this study and revised the manuscript.

All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yuming Wei or Yaxi Liu.

Ethics declarations

The experiments comply with the ethical standards in the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1.

a Tillering phenotypes of NIL7 at grain-filling stage (NIL7B, left; NIL7A, right). b Tillering phenotypes of NIL11 at grain-filling stage (NIL11B, left; NIL11A, right) (PNG 2343 kb)

High resolution image (TIF 10558 kb)

Figure S2.

a Sampling periods of NIL7A (From Z20 to Z23). b Sampling periods of NIL7B (From Z20 to Z23). c Sampling periods of NIL11A (From Z20 to Z23). d Sampling periods of NIL11B (From Z20 to Z23) (PNG 1556 kb)

High resolution image (TIF 1409 kb)

Figure S3.

Length distribution of 5399 identified lncRNA transcripts (PNG 1538 kb)

High resolution image (TIF 6153 kb)

Figure S4.

Exon number of 5399 identified lncRNA transcripts (PNG 2192 kb)

High resolution image (TIF 9509 kb)

ESM 1

(XLSX 3075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Shi, H., Wang, Z. et al. Identification of lncRNAs involved in wheat tillering development in two pairs of near-isogenic lines. Funct Integr Genomics 20, 669–679 (2020). https://doi.org/10.1007/s10142-020-00742-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00742-z

Keywords

Navigation