Log in

Production of Lipids and Proteome Variation in a Chilean Thraustochytrium striatum Strain Cultured under Different Growth Conditions

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Total lipids and docosahexaenoic acid (DHA) production by a Chilean isolated thraustochytrid were evaluated under different growth conditions in shake flasks. The analyzed strain was identified as Thraustochytrium striatum according to an 18S rRNA gene sequence analysis. The strain (T. striatum AL16) showed negligible growth in media prepared with artificial seawater at concentrations lower than 50% v/v and pH lower than 5. Maltose and starch were better carbon sources for growth than glucose. DHA content of the biomass grown with maltose (60 g L−1) was doubled by increasing the agitation rate from 150 to 250 rpm. The DHA (0.8–6%) and eicosapentaenoic acid (0.2–21%) content in the total lipids varied depending on culture conditions and culture age. Lipid and DHA concentration increased (up to 5 g L−1 and 66 mg L−1, respectively) by regularly feeding the culture with a concentrated starch solution. Carotenoid accumulation was detected in cells grown with maltose or starch. Contrasting conditions of starch and glucose cultures were selected for comparative proteomics. Total protein extracts were separated by two-dimensional gel electrophoresis; 25 spots were identified using ESI-MS/MS. A protein database (143,006 entries) for proteomic interrogation was generated using de novo assembling of Thraustochytrium sp. LLF1b – MMETSP0199_2 transcriptome; 18 proteins differentially expressed were identified. Three ATP synthases were differentially accumulated in cultures with glucose, whereas malate dehydrogenase was more abundant in cells cultured with starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afgan E, Baker D, van der Beek M, Blankerberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aki T, Hachida K, Yoshinaga M, Katai Y, Yamasaki T, Kawamoto S, Kakizono T, Maoka T, Shigeta S, Suzuki O, Ono K (2003) Thraustochytrid as a potential source of carotenoids. J Am Oil Chem Soc 80:789–794

    Article  CAS  Google Scholar 

  • Bailey RB, DiMasi D, Hansen JM, Mirrasoul PJ, Ruecker CM, Veeder GT, Kaneko T, Barclay WR (2003) Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors. US Patent 6607900

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Luo Z, Gu S, Wu Q, Chang M, Wang X (2013) Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol 142:255–260

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Liu Y, Frear C, Chen S (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Connor W (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175S

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrove thraustochytrids. Bot Mar 45:50–57

    Article  Google Scholar 

  • Gaertner A (1968) Eine methode des nachweises niederer mit pollen koderbarer pilze im meerwasser und im sediment. Veroff Inst Meeresforch Bremer Sonderb 3:75–92

    Google Scholar 

  • Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76:985–990

    Article  CAS  PubMed  Google Scholar 

  • Garcés M, Claverol S, Alvear C, Rabert C, Bravo L (2014) Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. C R Biol 337:235–243

    Article  Google Scholar 

  • García-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Barrow C, Puri M (2012) Omega-3 biotechnology. Thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid DHA. Pharmacol Res 40:211–225

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  CAS  PubMed  Google Scholar 

  • Jeh E-J, Kumaran RS, Hur B-K (2008) Lipid body formation by Thraustochytrium aureum (ATCC 34304) in response to cell age. Korean J Chem Eng 25:1103–1109

    Article  CAS  Google Scholar 

  • Ji XJ, Mo KQ, Ren LJ, Li GL, Huang JZ, Huang H (2015) Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids. Genome Announc 3:e00819–e00815

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidd PM (2007) Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 12:207–227

    PubMed  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Ward OP (1994) Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X (2015) Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep 5:14446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Tian M, Tan Y, Cui G, Feng Y, Cui Q, Song X (2017) Response mechanism of docosahexanoic producer Aurantiochytrium under cold stress. Algal Res 25:191–199

    Article  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, **an M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol A Mol Integr Physiol 148:382–392

    Article  CAS  PubMed  Google Scholar 

  • Mo C, Douek J, Rinkevich B (2002) Development of a PCR strategy for thraustochytrid identification based on 18S rDNA sequence. Mar Biol 140:883–889

    Article  CAS  Google Scholar 

  • Plourde M, Cunnane SC (2007) Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 32:619–634

    Article  CAS  PubMed  Google Scholar 

  • Qiu X (2003) Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fat Acids 68:181–186

    Article  CAS  Google Scholar 

  • Quilodrán B, Hinzpeter I, Quiroz A, Shene C (2009) Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains. World J Microbiol Biotechnol 25:2121–2128

    Article  CAS  Google Scholar 

  • Ramagli LS, Rodríguez LV (1985) Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6:559–563

    Article  CAS  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen RS, Nettleton J, Morrissey MT (2005) A review of mercury in seafood: special focus on tuna. J Aquat Food Prod Technol 14:71–100

    Article  CAS  Google Scholar 

  • Robles Medina A, Molina Grima E, Giménez Giménez A, Ibáñez González MJ (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Tanguy A, Perrigault M, Espinosa EP, Allam B (2014) Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 15:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shene C, Leyton A, Rubilar M, Pinelo M, Acevedo F, Morales E (2013) Production of lipids and docosahexasaenoic acid (DHA) by a native Thraustochytrium strain. Eur J Lipid Sci Technol 115:890–900

    Article  CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73:180–182

    Article  CAS  PubMed  Google Scholar 

  • Yang JD, Wang NS (1992) Oxygen mass transfer enhancement via fermentor headspace pressurization. Biotechnol Prog 8:244–251

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comp Biol 7:203–214

    Article  CAS  Google Scholar 

  • Zhang L, Zhao H, Lai Y, Wu J, Chen H (2013) Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode. Bioresour Technol 142:719–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Centre for Biotechnology and Bioengineering (CeBiB) FB-0001 and partially supported by the supercomputing infrastructure of the NLHPC (ECM-02; Powered@NLHPC). Parts of the experiments (Galaxy server) were performed at the Bordeaux Bioinformatic Center (CBIB). The authors thank the Dirección de Investigación at Universidad de La Frontera for economic support provided through GAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Shene.

Electronic supplementary material

ESM 1

(DOCX 484 kb)

ESM 2

(XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shene, C., Garcés, M., Vergara, D. et al. Production of Lipids and Proteome Variation in a Chilean Thraustochytrium striatum Strain Cultured under Different Growth Conditions. Mar Biotechnol 21, 99–110 (2019). https://doi.org/10.1007/s10126-018-9863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9863-z

Keywords

Navigation