Log in

Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Natural rubber (NR) is widely used in various fields including aerospace, military industry and transportation due to its superior elasticity and comprehensive mechanical properties. Nonetheless, the commercial NR prepared by different methods usually exhibits different mechanical properties, primarily due to variations in processing conditions during the conversion from latex to bulk rubber material. Consequently, this poses challenges in scientific research and industrial production of NR. In order to assess the properties of various commercially available NR and identify key structural and compositional components, this study systematically compares and analyzes four representative NR raw materials: air dried sheet (ADS), ribbed smoked sheets (RSS), constant viscidity NR (CV), and whole field latex rubber (WF). The investigation focuses on evaluating their static mechanical behavior, SIC behavior, wear resistance, and fatigue resistance. The findings indicate that protein and gel content exhibit a crucial influence on the NR properties. These constituents contribute to the formation of a high-crosslinking density region, generating a heterogeneous network structure within the rubber. This structure amplifies strains during deformation, leading to earlier and stronger strain-induced crystallization (SIC). Among the four commercial NR brands, RSS demonstrates superior overall mechanical and dynamic properties owing to its high protein and gel content. This study serves as a valuable reference for comprehending the differences in properties among various commercial NR, thereby offering guidance for the actual processing and selection of NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaikumpollert, O.; Yamamoto, Y.; Suchiva, K.; Nghia, P. T.; Kawahara, S. Preparation and characterization of protein-free natural rubber. Polym. Adv. Technol. 2012, 23, 825–828.

    Article  CAS  Google Scholar 

  2. Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001, 74, 355–375.

    Article  CAS  Google Scholar 

  3. Yu, H.; Wang, Q.; Li, J.; Liu, Y.; He, D.; Gao, X.; Yu, H. Effect of lipids on the stability of natural rubber latex and tensile properties of its films. J. Rubber. Res. 2017, 20, 213–222.

    Article  CAS  Google Scholar 

  4. Hassanabadi, M.; Najafi, M.; Nikazar, S.; Garakani, S. S.; Motlagh, G. H.; Kiersnowski, A. Impact of placement of aminopropyl triethoxy silane and tetraethoxy silicate on ssbr chains: analysis of rolling resistance, wet grip, and abrasion resistance. Adv. Polym. Technol. 2022, 2022, 1566042.

    Article  Google Scholar 

  5. Liu, H.; Shen, Q.; Zhang, L.; Gu, S.; Peng, Y.; Wu, Q.; **ong, H.; Zhang, H.; Zhao, L.; Huang, G.; Wu, J. A fast-healing and highperformance metallosupramolecular elastomer based on pyridine-Cu coordination. Sci. China Mater. 2022, 65, 1943–1951.

    Article  CAS  Google Scholar 

  6. Zhang, L.; **ong, H.; Wu, Q.; Peng, Y.; Zhu, Y.; Wang, H.; Yang, Y.; Liu, X.; Huang, G.; Wu, J. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Sci. China Mater. 2021, 64, 1780–1790.

    Article  CAS  Google Scholar 

  7. Qi, Y.; Liu, Z.; Liu, S.; Cui, L.; Dai, Q.; He, J.; Dong, W.; Bai, C. Synthesis of 1,3-butadiene and its 2-substituted monomers for synthetic rubbers. Catalysts 2019, 9, 97.

    Article  Google Scholar 

  8. Toki, S.; Che, J.; Rong, L.; Hsiao, B. S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 2013, 46, 5238–5248.

    Article  CAS  Google Scholar 

  9. Nun-Anan, P.; Suchat, S.; Mahathaninwong, N.; Chueangchayaphan, N.; Karrila, S.; Limhengha, S. Study of aquilaria crassna wood as an antifungal additive to improve the properties of natural rubber as air-dried sheets. Polymers 2021, 13, 4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thuong, N. T.; Yamamoto, Y.; Nghia, P. T.; Kawahara, S. Analysis of damage in commercial natural rubber through NMR spectroscopy. Polym. Degrad. Stabil. 2016, 123, 155–161.

    Article  CAS  Google Scholar 

  11. Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. J. Appl. Microbiol. 2014, 117, 921–929.

    Article  CAS  PubMed  Google Scholar 

  12. Salomez, M.; Subileau, M.; Vallaeys, T.; Santoni, S.; Bonfils, F.; Sainte-Beuve, J.; Intapun, J.; Granet, F.; Vaysse, L.; Dubreucq, E. Microbial communities in natural rubber coagula during maturation: impacts on technological properties of dry natural rubber. J. Appl. Microbiol. 2018, 124, 444–456.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, L.; Zhong, J. P.; Wang, Z. F.; Li, L. F.; Chen, J.; Li, S. D. Vulcanization characteristics of natural rubber coagulated by microorganisms. Rubber Chem. Technol. 2018, 91, 64–78.

    Article  Google Scholar 

  14. Chen, G.; Wang, B.; Lin, H.; Peng, W.; Zhang, F.; Li, G.; Ke, D.; Liao, J.; Liao, L. Effect of nonisoprene degradation and naturally occurring network during maturation on the properties of natural rubber. Polymers 2022, 14, 2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dafader, N. C.; Haque, M. E.; Jolly, Y. N.; Akhtar, F.; Ahmad, M. U. Dependence of physicochemical properties of radiation vulcanized natural rubber latex film on maturation time. Polymplast. Technol. 2003, 42, 217–227.

    Article  CAS  Google Scholar 

  16. Chen, M.; Wang, Y. Z.; Lu, G.; Wang, X. P. Effects of different drying methods on the microstructure and thermal oxidative aging resistance of natural rubber. J. Appl. Polym. Sci. 2012, 126, 1808–1813.

    Article  CAS  Google Scholar 

  17. Tham, T. C.; Ng, M. X.; Ong, S. P.; Hii, C. L.; Law, C. L. Application of microwave-assisted drying on specific energy consumption, effective diffusion coefficient and topological changes of crumb natural rubber (cis-1,4-polyisoprene). Chem. Eng. Process. Process Intensif. 2018, 128, 19–35.

    Article  CAS  Google Scholar 

  18. Sakdapipanich, J.; Klinklai, W.; Kawahara, S.; Tanaka, Y.; Yunyongwattanakorn, J. Effect of non-rubber components on storage hardening and gel formation of natural rubber during accelerated storage under various conditions. Rubber Chem. Technol. 2003, 76, 1228–1240.

    Article  Google Scholar 

  19. Nimpaiboon, A.; Sriring, M.; Sakdapipanich, J. T. Molecular structure and storage hardening of natural rubber: insight into the reactions between hydroxylamine and phospholipids linked to natural rubber molecule. J. Appl. Polym. 2016, 133, 43753.

    Article  Google Scholar 

  20. Chollakup, R.; Suwanruji, P.; Tantatherdtam, R.; Smitthipong, W. New approach on structure-property relationships of stabilized natural rubbers. J. Polym. Res. 2019, 26, 1–11.

    Article  CAS  Google Scholar 

  21. Dixit, M.; Taniguchi, T. Substantial effect of terminal groups in cis-polyisoprene: a multiscale molecular dynamics simulation study. Macromolecules 2022, 55, 9650–9662.

    Article  CAS  Google Scholar 

  22. Kawahara, S. Discovery of island-nanomatrix structure in natural rubber. Polym. J. 2023, 55, 1007–1021.

    Article  CAS  Google Scholar 

  23. Chaikumpollert, O.; Yamamoto, Y.; Suchiva, K.; Kawahara, S. Protein-free natural rubber. Colloid. Polym. Sci. 2011, 290, 331–338.

    Article  Google Scholar 

  24. Liu, H.; Huang, G.-S.; Wei, L.-Y.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. R. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese. J. Polym. Sci. 2019, 37, 1142–1151.

    Article  CAS  Google Scholar 

  25. Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Kawahara, S. Effect of non-rubber components on the mechanical properties of natural rubber. Polym. Adv. Technol. 2017, 28, 159–165.

    Article  CAS  Google Scholar 

  26. Wei, Y. C.; Liu, G. X.; Zhang, H. F.; Zhao, F.; Luo, M. C.; Liao, S. Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 2019, 183, 121911.

    Article  CAS  Google Scholar 

  27. Fu, X.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Characterizing the naturally occurring sacrificial bond within natural rubber. Polymer 2019, 161, 41–48.

    Article  CAS  Google Scholar 

  28. Aik-Hwee, E.; Tanaka, Y.; Sakdapipanich, J. T.; Isono, Y.; Kawahara, S. Effect of gel on the green strength of natural rubber. Rubber Chem. Technol. 2002, 75, 739–746.

    Article  Google Scholar 

  29. Bhowmick, A. K.; Cho, J.; MacArthur, A.; McIntyre, D. Influence of gel and molecular weight on the properties of natural rubber. Polymer 1986, 27, 1889–1894.

    Article  CAS  Google Scholar 

  30. Oliveira Reis, G.; Gibaud, T.; Saint-Michel, B.; Manneville, S.; Leocmach, M.; Vaysse, L.; Bonfils, F.; Sanchez, C.; Menut, P. Irreversible hardening of a colloidal gel under shear: the smart response of natural rubber latex gels. J. Colloid Interface Sci. 2019, 539, 287–296.

    Article  PubMed  Google Scholar 

  31. Nimpaiboon, A.; Amnuaypornsri, S.; Sakdapipanich, J. Influence of gel content on the physical properties of unfilled and carbon black filled natural rubber vulcanizates. Polym. Test. 2013, 32, 1135–1144.

    Article  CAS  Google Scholar 

  32. Nun-anan, P.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Kummerlöwe, C.; Nakason, C. Influence of alkaline treatment and acetone extraction of natural rubber matrix on properties of carbon black filled natural rubber vulcanizates. Polym. Test. 2020, 89, 106623.

    Article  CAS  Google Scholar 

  33. Qu, W.; Zhu, Y.; Huang, G.; Huang, C.; Luo, M. C.; Zheng, J. Study of molecular weight and chain branching architectures of natural rubber. J. Appl. Polym. Sci. 2016, 133, 43975.

    Article  Google Scholar 

  34. Razavi-Nouri, M.; Sabet, A.; Mohebbi, M. The gel content effect on rheological and physical properties of cured acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organomontmorillonite nanocomposites. Iran. Polym. J. 2021, 30, 965–974.

    Article  CAS  Google Scholar 

  35. Tanaka, Y.; Sakdapipanich, J. T.; Tarachiwin, L. Gel formation in natural rubber latex: 2. Effect of magnesium ion. Rubber Chem. Technol. 2003, 76, 1185–1193.

    Article  Google Scholar 

  36. Xu, Z.; Song, Y.; Zheng, Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer 2019, 185, 121953.

    Article  CAS  Google Scholar 

  37. Rolere, S.; Bottier, C.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F. Characterisation of macrogel composition from industrial natural rubber samples: influence of proteins on the macrogel crosslink density. Express Polym. Lett. 2016, 10, 408–419.

    Article  CAS  Google Scholar 

  38. Narueporn, P.; Tadashi, I.; Jitladda, S. A model study of the influence of the natural rubber (nr)- endogenous gel fraction on the rheological performance of nr using synthetic polyisoprene rubber (IR) blends with different ratios of gel. ACS Appl. Polym. Mater. 2022, 4, 7061–7069.

    Article  Google Scholar 

  39. Li, Z. X.; Kong, Y. R.; Chen, X. F.; Huang, Y. J.; Lv, Y. D.; Li, G. X. High-temperature thermo-oxidative aging of vulcanized natural rubber nanocomposites: evolution of microstructure and mechanical properties. Chinese J. Polym. Sci. 2023, 41, 1287–1297.

    Article  CAS  Google Scholar 

  40. Zhang, Z.; Sun, J.; Lai, Y.; Wang, Y.; Liu, X.; Shi, S.; Chen, X. Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber. Polym. Test. 2018, 70, 102–110.

    Article  CAS  Google Scholar 

  41. Amerik, A. Y.; Martirosyan, Y. T.; Martirosyan, L. Y.; Goldberg, V. M.; Uteulin, K. R.; Varfolomeev, S. D. Molecular genetic analysis of natural rubber biosynthesis. Russ. J. Plant Physiol. 2021, 68, 31–45.

    Article  CAS  Google Scholar 

  42. Yamamoto, Y.; Binti Norulhuda, S. N.; Nghia, P. T.; Kawahara, S. Thermal degradation of deproteinized natural rubber. Polym. Degrad. Stabil. 2018, 156, 144–150.

    Article  CAS  Google Scholar 

  43. Akahori, Y.; Kawahara, S. Effect of water on the accelerated sulfur vulcanization of natural rubber. Polym. Test. 2023, 123, 108030.

    Article  CAS  Google Scholar 

  44. Ran, S.; Fang, D.; Zong, X.; Hsiao, B. S.; Chu, B.; Cunniff, P. M. Structural changes during deformation of Kevlar fibers via online synchrotron SAXS/WAXD techniques. Polymer 2001, 42, 1601–1612.

    Article  CAS  Google Scholar 

  45. Shibayama, M.; Kurokawa, H.; Nomura, S.; Muthukumar, M.; Stein, R. S.; Roy, S. Small-angle neutron scattering from poly(vinyl alcohol)-borate gels. Polymer 1992, 33, 2883–2890.

    Article  CAS  Google Scholar 

  46. Toki, S.; Burger, C.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J.; Tanaka, Y. Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J. Polym. Sci. 2008, 46, 2456–2464.

    Article  CAS  Google Scholar 

  47. Fu, X.; Huang, G.; **e, Z.; **ng, W. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv. 2015, 5, 25171–25182.

    Article  CAS  Google Scholar 

  48. Qu, L.; Huang, G.; Liu, Z.; Zhang, P.; Weng, G.; Nie, Y. Remarkable reinforcement of natural rubber by deformation-induced crystallization in the presence of organophilic montmorillonite. Acta Mater. 2009, 57, 5053–5060.

    Article  CAS  Google Scholar 

  49. Wu, J.; Schultz, J. M.; Yeh, F.; Hsiao, B. S.; Chu, B. in-situ simultaneous synchrotron small- and wide-angle X-ray scattering measurement of poly(vinylidene fluoride) fibers under deformation. Macromolecules 2000, 33, 1765–1777.

    Article  CAS  Google Scholar 

  50. Gopesh, T.; Friend, J. Facile analytical extraction of the hyperelastic constants for the two-parameter mooney-rivlin model from experiments on soft polymers. Soft Robot. 2021, 8, 365–370.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Howse, S.; Porter, C.; Mengistu, T.; Pazur, R. J. Experimental determination of the quantity and distribution of chemical crosslinks in unaged and aged natural rubber, part 1: peroxide vulcanization. Polym. Test. 2018, 70, 263–274.

    Article  CAS  Google Scholar 

  52. Kumar, A.; Dalmiya, M. S.; Goswami, M.; Bansal, V.; Goyal, S.; Nair, S.; Hossain, S. J.; Chattopadhyay, S. Entangled network influenced by carbon black in solution Sbr vulcanizates revealed by theory and experiment. Rubber Chem. Technol. 2021, 94, 324–338.

    Article  CAS  Google Scholar 

  53. Hamza, S. S.; El-sabbagh, S.; Shokr, F. Elastic behavior of NR/IIR rubber blend loaded with different compatibilizers. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 203–215.

    Article  CAS  Google Scholar 

  54. Gent, A. N. Crystallization in natural rubber. IV. Temperature dependence. J. Polym. Sci. 1955, 18, 321–334.

    Article  CAS  Google Scholar 

  55. Kelsey, R. H.; Dillon, J. H. Rheological properties of natural and synthetic rubbers. J. Appl. Phys. 1944, 15, 352–359.

    Article  CAS  Google Scholar 

  56. McMahan, C.; Kostyal, D.; Lhamo, D.; Cornish, K. Protein influences on guayule and Hevea natural rubber sol and gel. J. Appl. Polym. Sci. 2015, 132, 42051.

    Article  Google Scholar 

  57. Promhuad, K.; Smitthipong, W. The effect of hydroxylamine sulfate on the storage hardening of natural rubber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 773, 012012.

    Article  CAS  Google Scholar 

  58. Nishi, T. Rubber wear mechanism discussion based on the relationship between the wear resistance and the tear resistance with consideration of the strain rate effect. Wear 2019, 426–427, 37–48.

    Article  Google Scholar 

  59. Zhang, J.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Toughening polyisoprene rubber with sacrificial bonds: the interplay between molecular mobility, energy dissipation and strain-induced crystallization. Polymer 2021, 231, 124114.

    Article  CAS  Google Scholar 

  60. Kawahara, S.; Kakubo, T.; Nishiyama, N.; Tanaka, Y.; Isono, Y.; Sakdapipanich, J. T. Crystallization behavior and strength of natural rubber: skim rubber, deproteinized natural rubber, and pale crepe. J. Appl. Polym. Sci. 2000, 78, 1510–1516.

    Article  CAS  Google Scholar 

  61. Kawahara, S.; Ruangdech, J.; Isono, Y.; Hikosaka, M.; Tanaka, Y. Effects of nonrubber components on the crystallization behavior of natural rubber. J. Macromol. Sci. B Phys. 2007, 42, 761–771.

    Article  Google Scholar 

  62. Bhattacharya, M.; Bhowmick, A. K. Analysis of wear characteristics of natural rubber nanocomposites. Wear 2010, 269, 152–166.

    Article  CAS  Google Scholar 

  63. Chen, X.; Wang, M.; Kong, Y.; Li, Z.; Wang, R.; Huang, Y.; Li, G. Effect of non-rubber components on the wear behavior of vulcanized natural rubber nanocomposites. Mater. Today Commun. 2023, 34, 105372.

    Article  CAS  Google Scholar 

  64. Han, J.; Zhang, Y.; Wu, C.; **e, L.; Ma, Y. Wet sliding abrasion of natural rubber composites filled with carbon black at different applied loads. J. Macromol. Sci. B Phys. 2015, 54, 401–410.

    Article  CAS  Google Scholar 

  65. Liu, X.; Shangguan, W.-B.; Zhao, X. Probabilistic fatigue life prediction model of natural rubber components based on the expanded sample data. Int. J. Fatigue 2022, 163, 107034.

    Article  Google Scholar 

  66. Tunnicliffe, L. B. Fatigue crack growth behavior of carbon black-reinforced natural rubber 66. Rubber Chem. Technol. 2021, 94, 494–514.

    Article  CAS  Google Scholar 

  67. Affatato, S.; Bracco, P.; Costa, L.; Villa, T.; Quaglini, V.; Toni, A. In vitro wear performance of standard, crosslinked, and vitamin-E-blended UHMWPE. J. Biomed. Mater. Res. Part A 2011, 100, 554–560.

    Google Scholar 

  68. Okui, M.; Kojima, A.; Hisamichi, I.; Kuriyama, S.; Kojima, T.; Tsuji, T.; Nakamura, T. Prolonging rubber fatigue life using hysteresis of strain-induced crystallization of natural rubber. Polym. Test. 2023, 117, 107800.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Research and Development Program in key area of Guangdong Province (No. 2020B020217001), the National Natural Science Foundation of China (No. 52173058) and National Key R&D Program of China (No. 2022YFD2301202). The authors are indebted to the Shanghai Synchrotron Radiation Facility (SSRF) for providing the necessary beamline time and technical assistance in the experiments on the BL16B1 line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Tian **e or **-Rong Wu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3071_MOESM1_ESM.pdf

Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SQ., Zhang, JQ., Zhu, Y. et al. Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors. Chin J Polym Sci 42, 457–467 (2024). https://doi.org/10.1007/s10118-024-3071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3071-2

Keywords

Navigation