Log in

Structure-Property Relationship Analysis of D-Penicillamine-Derived β-Polythioesters with Varied Alkyl Side Groups

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The ring-opening polymerization of heterocyclic monomers and the reversed ring-closing depolymerization of corresponding polymers with neutral thermodynamics are broadly explored to establish a circular economy of next-generation plastics. Polythioesters (PTEs), analogues of polyesters, are emerging materials for this purpose due to their high refractive index, high crystallinity, dynamic property and responsiveness. In this work, we synthesize and polymerize a series of D-penicillamine-derived β-thiolactones (NRPenTL) with varied side chain alkyl groups, and study the structure-property relationship of the resulting polymers. The obtained PTEs exhibit tunable glass transition temperature in a wide range of 130–50 °C, and melting temperature of 90–105 °C. In addition, copolymerizations of monomers with different side chains are effective in modulating material properties. The obtained homo and copolymers can be fully depolymerized to recycle monomers. This work provides a robust molecular platform and detailed structure-property relationship of PTEs with potential of achieving sustainable plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  2. MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, X. S.; Chen, G. Q.; Tao, Y. H.; Wang, Y. Z.; Lu, X. B.; Zhang, L. Q.; Zhu, J.; Zhang, J.; Wang, X. H. Research progress in ecopolymers. Acta Polymerica Sinica (in Chinese) 2019, 50, 1068–1082.

    CAS  Google Scholar 

  4. Law, K. L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 2022, 7, 104–116.

    Article  CAS  Google Scholar 

  5. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    Article  CAS  PubMed  Google Scholar 

  6. Zuin, V. G.; Kümmerer, K. Chemistry and materials science for a sustainable circular polymeric economy. Nat. Rev. Mater. 2022, 7, 76–78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yue, T. J.; Wang, L. Y.; Ren, W. M. The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polym. Chem. 2021, 12, 6650–6666.

    Article  CAS  Google Scholar 

  8. Xu, G.; Wang, Q. Chemically recyclable polymer materials: Polymerization and depolymerization cycles. Green Chem. 2022, 24, 2321–2346.

    Article  CAS  Google Scholar 

  9. **ong, W.; Lu, H. Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci. China Chem. 2023, 66, 725–738.

    CAS  Google Scholar 

  10. Cai, Z.; Liu, Y.; Tao, Y.; Zhu, J. B. Recent advances in monomer design for recyclable polymers. Acta Chim. Sin. 2022, 80, 1165–1182.

    Article  CAS  Google Scholar 

  11. Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020, 5, 501–516.

    Article  CAS  Google Scholar 

  12. Greer, S. C. Physical chemistry of equilibrium polymerization. J. Phys. Chem. B 1998, 102, 5413–5422.

    Article  CAS  Google Scholar 

  13. Hocker, H. Thermodynamic recycling on ring-opening polymerization and ring-closing depolymerization. J. Macromol. Sci., Pure Appl. Chem. 1993, A30, 595–601.

    Article  Google Scholar 

  14. Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398–403.

    Article  CAS  PubMed  Google Scholar 

  15. Li, J.; Liu, F.; Liu, Y.; Shen, Y.; Li, Z. Functionalizable and chemically recyclable thermoplastics from chemoselective ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone. Angew. Chem. Int. Ed. 2022, 61, e202207105.

    Article  CAS  Google Scholar 

  16. Yan, Y. T.; Wu, G.; Chen, S. C.; Wang, Y. Z. Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Sci. China Chem. 2022, 65, 943–953.

    Article  CAS  Google Scholar 

  17. Li, L. G.; Wang, Q. Y.; Zheng, Q. Y.; Du, F. S.; Li, Z. C. Tough and thermally recyclable semiaromatic polyesters by ring-opening polymerization of benzo-thia-caprolactones. Macromolecules 2021, 54, 6745–6752.

    Article  CAS  Google Scholar 

  18. Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  19. Shen, Y.; **ong, W.; Li, Y.; Zhao, Z.; Lu, H.; Li, Z. Chemoselective polymerization of fully biorenewable α-methylene-γ-butyrolactone using organophosphazene/urea binary catalysts toward sustainable polyesters. CCS Chem. 2020, 3, 620–630.

    Article  Google Scholar 

  20. Yang, X.; Fan, H. Z.; Cai, Z.; Zhang, Q.; Zhu, J. B. Ring-opening polymerization of a benzyl-protected cyclic ester towards functional aliphatic polyester. Chin. J. Chem. 2022, 40, 2973–2980.

    Article  CAS  Google Scholar 

  21. Yuan, J.; **ong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. 4-hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 2019, 141, 4928–4935.

    Article  CAS  PubMed  Google Scholar 

  22. **ong, W.; Chang, W.; Shi, D.; Yang, L.; Tian, Z.; Wang, H.; Zhang, Z.; Zhou, X.; Chen, E.-Q.; Lu, H. Geminal dimethyl substitution enables controlled polymerization of penicillamine-derived β-thiolactones and reversed depolymerization. Chem 2020, 6, 1831–1843.

    Article  CAS  Google Scholar 

  23. Shi, C.; McGraw, M. L.; Li, Z. C.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Sci. Adv. 2020, 6, eabc0495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y.; Li, M.; Chen, J.; Tao, Y.; Wang, X. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs. dilactone. Angew. Chem. Int. Ed. 2021, 60, 22547–22553.

    Article  CAS  Google Scholar 

  25. Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem. 2022, 14, 294–303.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y.; Zhu, Y.; Lv, W.; Wang, X.; Tao, Y. Tough while recyclable plastics enabled by monothiodilactone monomers. J. Am. Chem. Soc. 2023, 145, 1877–1885.

    Article  CAS  PubMed  Google Scholar 

  27. Dai, J.; **ong, W.; Du, M.-R.; Wu, G.; Cai, Z.; Zhu, J. B. A facile approach towards high-performance poly(thioether-thioester)s with full recyclability. Sci. China Chem. 2023, 66, 251–258.

    Article  CAS  Google Scholar 

  28. Zhu, Y.; Li, M.; Wang, Y.; Tao, Y.; Wang, X. Performance-advantaged stereoregular recyclable plastics enabled by aluminum-catalytic ring-opening polymerization of dithiolactone. Angew. Chem. Int. Ed. 2023, e202302898.

  29. Zhang, W.; Dai, J.; Wu, Y. C.; Chen, J. X.; Shan, S. Y.; Cai, Z.; Zhu, J. B. Highly reactive cyclic carbonates with a fused ring toward functionalizable and recyclable polycarbonates. ACS Macro Lett. 2022, 11, 173–178.

    Article  CAS  PubMed  Google Scholar 

  30. Saxon, D. J.; Gormong, E. A.; Shah, V. M.; Reineke, T. M. Rapid synthesis of chemically recyclable polycarbonates from renewable feedstocks. ACS Macro Lett. 2021, 10, 98–103.

    Article  CAS  PubMed  Google Scholar 

  31. Ellis, W. C.; Jung, Y.; Mulzer, M.; Di Girolamo, R.; Lobkovsky, E. B.; Coates, G. W. Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 2014, 5, 4004–4011.

    Article  CAS  Google Scholar 

  32. Keul, H.; Müller, A. J.; Höcker, H. Preparation of polymers with polycarbonate sequences and their depolymerization: an example of thermodynamic recycling. Makromol. Chem., Macromol. symp. 1993, 67, 289–298.

    Article  CAS  Google Scholar 

  33. Singer, F. N.; Deacy, A. C.; McGuire, T. M.; Williams, C. K.; Buchard, A. Chemical recycling of poly(cyclohexene carbonate) using a di-Mg catalyst. Angew. Chem. Int. Ed. 2022, 61, e202201785.

    Article  CAS  Google Scholar 

  34. Liao, X.; Cui, F. C.; He, J. H.; Ren, W. M.; Lu, X. B.; Zhang, Y. T. A sustainable approach for the synthesis of recyclable cyclic CO2-based polycarbonates. Chem. Sci. 2022, 13, 6283–6290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogata, N. Studies on polymerization and depolymerization of ε-caprolactam polymer. IX. Reformation reaction of ε-caprolactam from poly-ε-capramide. Bull. Chem. Soc. Jpn. 1961, 34, 1201–1205.

    Article  CAS  Google Scholar 

  36. Kamimura, A.; Yamamoto, S. An efficient method to depolymerize polyamide plastics: a new use of ionic liquids. Org. Lett. 2007, 9, 2533–2535.

    Article  CAS  PubMed  Google Scholar 

  37. Abel, B. A.; Snyder, R. L.; Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 2021, 373, 783–789.

    Article  CAS  PubMed  Google Scholar 

  38. Vidal, F.; Williams, C. K. Chemically recyclable polyacetals to deliver useful thermoplastics. Chem 2021, 7, 2857–2859.

    Article  CAS  Google Scholar 

  39. Li, H.; Ollivier, J.; Guillaume, S. M.; Carpentier, J. F. Tacticity control of cyclic poly(3-thiobutyrate) prepared by ring-opening polymerization of racemic β-thiobutyrolactone. Angew. Chem. Int. Ed. 2022, 61, e202202386.

    Article  CAS  Google Scholar 

  40. Cao, X.; Wang, H.; Yang, J.; Wang, R.; Hong, X.; Zhang, X.; Xu, J.; Wang, H. Sulfur-substitution-enhanced crystallization and crystal structure of poly(trimethylene monothiocarbonate). Chin. Chem. Lett. 2022, 33, 1021–1024.

    Article  CAS  Google Scholar 

  41. Zhang, Z.; **ong, Y.; Yang, P.; Li, Y.; Tang, R.; Nie, X.; Chen, G.; Wang, L. H.; Hong, C. Y.; You, Y. Z. Easy access to diverse multiblock copolymers with on-demand blocks via thioester-relayed in-chain cascade copolymerization. Angew. Chem. Int. Ed. 2023, 62, e202216685.

    Article  CAS  Google Scholar 

  42. Ghobril, C.; Charoen, K.; Rodriguez, E. K.; Nazarian, A.; Grinstaff, M. W. A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable sealant system for wound closure. Angew. Chem. Int. Ed. 2013, 52, 14070–14074.

    Article  CAS  Google Scholar 

  43. Soars, S. M.; Kirkpatrick, B. E.; Fairbanks, B. D.; Kamps, J. T.; Anseth, K. S.; Bowman, C. N. Synthesis, selective decoration and photocrosslinking of self-immolative poly(thioester)-PEG hydrogels. Polym. Int. 2022, 71, 906–911.

    Article  CAS  Google Scholar 

  44. Bongiardina, N. J.; Long, K. F.; Podgórski, M.; Bowman, C. N. Substituted thiols in dynamic thiol-thioester reactions. Macromolecules 2021, 54, 8341–8351.

    Article  CAS  Google Scholar 

  45. Worrell, B. T.; Mavila, S.; Wang, C.; Kontour, T. M.; Lim, C. H.; McBride, M. K.; Musgrave, C. B.; Shoemaker, R.; Bowman, C. N. A user’s guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polym. Chem. 2018, 9, 4523–4534.

    Article  CAS  Google Scholar 

  46. Konieczynska, M. D.; Villa-Camacho, J. C.; Ghobril, C.; Perez-Viloria, M.; Tevis, K. M.; Blessing, W. A.; Nazarian, A.; Rodriguez, E. K.; Grinstaff, M. W. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew. Chem. Int. Ed. 2016, 55, 9984–9987.

    Article  CAS  Google Scholar 

  47. Wang, Y.; Li, M.; Wang, S.; Tao, Y.; Wang, X. S-carboxyanhydrides: ultrafast and selective ring-opening polymerizations towards well-defined functionalized polythioesters. Angew. Chem. Int. Ed. 2021, 60, 10798–10805.

    Article  CAS  Google Scholar 

  48. Overberger, C. G.; Weise, J. K. A polythioester by ring-opening polymerization. J. Polym. Sci., Part B: Polym. Phys. 1964, 2, 329–331.

    Article  CAS  Google Scholar 

  49. Overberger, C. G.; Weise, J. K. Anionic ring-opening polymerization of thiolactones. J. Am. Chem. Soc. 1998, 90, 3533–3537.

    Article  Google Scholar 

  50. Sanda, F.; Jirakanjana, D.; Hitomi, M.; Endo, T. Anionic ring-opening polymerization of ε-thionocaprolactone. Macromolecules 1999, 32, 8010–8014.

    Article  CAS  Google Scholar 

  51. Bannin, T. J.; Kiesewetter, M. K. Poly(thioester) by organocatalytic ring-opening polymerization. Macromolecules 2015, 48, 5481–5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suzuki, M.; Makimura, K.; Matsuoka, S. I. Thiol-mediated controlled ring-opening polymerization of cysteine-derived β-thiolactone and unique features of product polythioester. Biomacromolecules 2016, 17, 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  53. Mavila, S.; Worrell, B. T.; Culver, H. R.; Goldman, T. M.; Wang, C.; Lim, C. H.; Domaille, D. W.; Pattanayak, S.; McBride, M. K.; Musgrave, C. B. Dynamic and responsive DNA-like polymers. J. Am. Chem. Soc. 2018, 140, 13594–13598.

    Article  CAS  PubMed  Google Scholar 

  54. Smith, R. A.; Fu, G.; McAteer, O.; Xu, M.; Gutekunst, W. R. Radical approach to thioester-containing polymers. J. Am. Chem. Soc. 2019, 141, 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  55. Yue, T. J.; Zhang, M. C.; Gu, G. G.; Wang, L. Y.; Ren, W.-M.; Lu, X. B. Precise synthesis of poly(thioester)s with diverse structures by copolymerization of cyclic thioanhydrides and episulfides mediated by organic ammonium salts. Angew. Chem. Int. Ed. 2019, 58, 618–623.

    Article  CAS  Google Scholar 

  56. **a, Y.; Yuan, P.; Zhang, Y.; Sun, Y.; Hong, M. Converting non-strained γ-valerolactone and derivatives into sustainable polythioesters via isomerization-driven cationic ring-opening polymerization of thionolactone intermediate. Angew. Chem. Int. Ed. 2023, 62, e202217812.

    Article  CAS  Google Scholar 

  57. Jung, M. E.; Piizzi, G. Gem-disubstituent effect: theoretical basis and synthetic applications. Chem. Rev. 2005, 105, 1735–1766.

    Article  CAS  PubMed  Google Scholar 

  58. Bachrach, S. M. The gem-dimethyl effect revisited. J. Org. Chem. 2008, 73, 2466–2468.

    Article  CAS  PubMed  Google Scholar 

  59. Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 2007, 40, 1546–1554.

    Article  CAS  Google Scholar 

  60. Lütke-Eversloh, T.; Bergander, K.; Luftmann, H.; Steinbüchel, A. Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 2001, 147, 11–19.

    Article  PubMed  Google Scholar 

  61. Bharmoria, P.; Edhborg, F.; Bildirir, H.; Sasaki, Y.; Ghasemi, S.; Mårtensson, A.; Yanai, N.; Kimizuka, N.; Albinsson, B.; Börjesson, K. Recyclable optical bioplastics platform for solid state red light harvesting via triplet-triplet annihilation photon upconversion. J. Mater. Chem. A 2022, 10, 21279–21290.

    Article  CAS  Google Scholar 

  62. Sun, Z.; Deng, H.; Mao, Z.; Li, Z.; Nie, K.; Fu, K.; Chen, J.; Zhao, J.; Zhu, P.; Chi, Z. Shape-memorable, self-healable, recyclable, and full-color emissive ultralong organic phosphorescence vitrimers with exchangeable covalent bonds. Adv. Opt. Mater. 2022, 10, 2201558.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 22125101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Er-Qiang Chen or Hua Lu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, CY., **ong, W., Chen, EQ. et al. Structure-Property Relationship Analysis of D-Penicillamine-Derived β-Polythioesters with Varied Alkyl Side Groups. Chin J Polym Sci 41, 1555–1562 (2023). https://doi.org/10.1007/s10118-023-3001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3001-8

Keywords

Navigation