Log in

Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Molecules adsorbed or attached on a surface is a quite basic phenomenon in numerous chemical or biological systems. Grafting-onto is considered as a feasible way to achieve it. The grafting reaction is essentially controlled by the diffusion of the molecules, thus it is more likely a physical issue, instead of a chemical issue. Because of the experimental difficulty in measuring the properties of surface-attached molecules (e.g., the polymeric molecules), the surface-bound molecules are often assumed as with the same properties as that of the start feeding ones in solution. This assumption was even used to guide further characterization, while it is proved to be invalid by different quantifying methods. Consequently, an effective prediction for the properties of surface-bound molecules is still lacking. Based on a microscopic level and a dynamic perspective, the grafting process onto a flat substrate with polydisperse feeding polymeric molecules is investigated in-depth by coarse-grained Brownian dynamics simulation as well as model analysis. We find from simulations that for the final grafting density σg and the mean chain length of start feeding molecules <N0>, the dependence of σg-<N0>γ with the constant exponential factor γ may be a determined rule for one-end functionalized flexible linear polymer chains grafting on the flat substrate. Since grafting-onto is a multiple interplayed process, our simulation study indicates that there is an optimized initial concentration of start feeding molecules for achieving high grafting density of surface-bound polymers. We also propose a correctional equation to quantitatively predict the molecular weight distribution (MWD) of surface-bound polymeric molecules, which may be effective for predicting the MWD of the surface-bound ones in specific conditions. This simulation study helps to better understand the kinetics of grafting-onto process, and serves as a theoretical guide to achieve the precise design of surface modification materials via grafting-onto strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.; Yang, H.; Green, P. F. Tailoring the refractive indices of thin film polymer metallic nanoparticle nanocomposites. Langmuir 2012, 28, 9735–9741.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J.; Green, P. F. Phase behavior of thin film brush-coated nanoparticles/homopolymer mixtures. Macromolecules 2010, 43, 1524–1529.

    Article  CAS  Google Scholar 

  3. Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36, 914–944.

    Article  CAS  Google Scholar 

  4. Agarwal, S.; Khan, M. M. K.; Gupta, R. K. Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 2008, 48, 2474–2481.

    Article  CAS  Google Scholar 

  5. Zidek, J.; Jancar, J.; Milchev, A.; Vilgis, T. A. Mechanical response of hybrid cross-linked networks to uniaxial deformation: a molecular dynamics model. Macromolecules 2014, 47, 8795–8807.

    Article  CAS  Google Scholar 

  6. Chen, Q.; Gong, S.; Moll, J.; Zhao, D.; Kumar, S. K.; Colby, R. H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett. 2015, 4, 398–402.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932.

    Article  CAS  PubMed  Google Scholar 

  8. Bielecki, R. M.; Benetti, E. M.; Kumar, D.; Spencer, N. D. Lubrication with oil-compatible polymer brushes. Tribol. Lett. 2012, 45, 477–487.

    Article  CAS  Google Scholar 

  9. Yakushiji, T.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.; Okano, T. Graft architectural effects on thermoresponsive wettability changes of poly(N-isopropylacrylamide)-modified surfaces. Langmuir 1998, 14, 4657–4662.

    Article  CAS  Google Scholar 

  10. Mansky, P. L. Y.; Huang, E.; Russell, T. P.; Hawker, C. J. Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275, 1458–1460.

    Article  CAS  Google Scholar 

  11. Bhushan, B.; Israelachvili, J.; Landman, U. Uzi Landman Nanotribology: friction, wear and lubrication at the atomic scale. Nature 1994, 374, 607–616.

    Article  Google Scholar 

  12. Berman, A.; Steinberg, S.; Campbell, S.; Ulman, A.; Israelachili, J. Controlled microtribology of a metal oxide surface. Tribol. Lett. 1998, 4, 43–48.

    Article  CAS  Google Scholar 

  13. Guo, S.; Zhang, Q.; Wang, D.; Wang, L.; Lin, F.; Wilson, P.; Haddleton, D. M. Bioinspired coating of TiO2 nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polym. Chem. 2017, 8, 6570–6580.

    Article  CAS  Google Scholar 

  14. Neyret, S.; Ouali, L.; Candau, F.; Pefferkorn, E. Adsorption of polyampholytes on polystyrene latex: effect on colloid stability. J. Colloid Interface Sci. 1995, 176, 86–94.

    Article  CAS  Google Scholar 

  15. Leermakers, F. A. M.; Zhulina, E. B.; van Male, J.; Mercurieva, A. A.; Fleer, G. J.; Birshtein T. M. Effect of a polymer brush on capillary condensation. Langmuir 2001, 17, 4459–4466.

    Article  CAS  Google Scholar 

  16. Li, C.; Shi, G. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochim. Acta 2011, 56, 10737–10743.

    Article  CAS  Google Scholar 

  17. Patel, H. A.; Somani, R. S.; Bajaj, H. C.; Jasra, R. V. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 2006, 29, 133–145.

    Article  CAS  Google Scholar 

  18. Kreft, O.; Javier, A. M.; Sukhorukov, G. B.; Parak, W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem. 2007, 17, 4471.

    Article  CAS  Google Scholar 

  19. Tokareva, I.; Minko, S.; Fendler, J. H.; Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2004, 126, 15950–15951.

    Article  CAS  PubMed  Google Scholar 

  20. Bilchak, C. R.; Buenning, E.; Asai, M.; Zhang, K.; Durning, C. J.; Kumar, S. K.; Huang, Y.; Benicewicz, B. C.; Gidley, D. W.; Cheng, S.; Sokolov, A. P.; Minelli, M.; Doghieri, F. Polymer-grafted nanoparticle membranes with controllable free volume. Macromolecules 2017, 50, 7111–7120.

    Article  CAS  Google Scholar 

  21. Iyer, K. S.; Zdyrko, B.; Malz, H.; Jürgen, P.; Luzinov, I. Polystyrene layers grafted to macromolecular anchoring layer. Macromolecules 2003, 36, 6519–6526.

    Article  CAS  Google Scholar 

  22. de Vos, W. M.; Leermakers, F. A. M. Modeling the structure of a polydisperse polymer brush. Polymer 2009, 50, 305–316.

    Article  CAS  Google Scholar 

  23. Burtovyy, O.; Klep, V.; Chen, H. C.; Hu, R. K.; Lin, C. C.; Luzinov, I. Hydrophobic modification of polymer surfaces via “grafting to” approach. J. Macromol. Sci. B 2007, 46, 137–154.

    Article  CAS  Google Scholar 

  24. Luzinov, I. Nanofabrication of thin polymer films. Nanofibers and Nanotechnology in Textiles 2007, 448–469.

  25. Macosko, C. W.; Guégan, P.; Khandpur, A. K. Compatibilizers for melt blending: premade block copolymers. Macromolecules 1996, 29, 5590–5598.

    Article  CAS  Google Scholar 

  26. Díaz, M. F.; Barbosa, S. E.; Capiati, N. J. Reactive compatibilization of PE/PS blends. Effect of copolymer chain length on interfacial adhesion and mechanical behavior. Polymer 2007, 48, 1058–1065.

    Article  CAS  Google Scholar 

  27. Lee, H. S.; Penn, L. S. Polymer brushes make nanopore filter membranes size selective to dissolved polymers. Macromolecules 2010, 43, 565–567.

    Article  CAS  Google Scholar 

  28. Cheng, L.; Cao, D. Designing a thermo-switchable channel for nanofluidic controllable transportation. ACS Nano 2011, 5, 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, H.; Zhu, Y. L.; Zhang, J.; Lu, Z. Y.; Sun, Z. Y. Influence of grafting surface curvature on chain polydispersity and molecular weight in concave surface-initiated polymerization. ACS Macro Lett. 2012, 1, 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  30. Oyerokun, F. T.; Vaia, R. A. Distribution in the grafting density of end-functionalized polymer chains adsorbed onto nanoparticle surfaces. Macromolecules 2012, 45, 7649–7659.

    Article  CAS  Google Scholar 

  31. Michalek, L.; Barner, L.; Barner-Kowollik, C. Polymer on top: current limits and future perspectives of quantitatively evaluating surface grafting. Adv. Mater. 2018, 30, e1706321.

    Article  PubMed  CAS  Google Scholar 

  32. Hong, B.; Panagiotopoulos, A. Z. Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J. Phys. Chem. B 2012, 116, 2385–2395.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, H.; Zhao, H. Y.; Müller-Plathe, F.; Qian, H. J.; Sun, Z. Y.; Lu, Z. Y. Distribution of the number of polymer chains grafted on nanoparticles fabricated by grafting-to and grafting-from procedures. Macromolecules 2018, 51, 3758–3766.

    Article  CAS  Google Scholar 

  34. Dodd, P. M.; Jayaraman, A. Monte carlo simulations of polydisperse polymers grafted on spherical surfaces. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 694–705.

    Article  CAS  Google Scholar 

  35. **ng, J. Y.; Lu, Z. Y.; Liu, H.; Xue, Y. H. The selectivity of nanoparticles for polydispersed ligand chains during the grafting-to process: a computer simulation study. Phys. Chem. Chem. Phys. 2018, 20, 2066–2074.

    Article  CAS  PubMed  Google Scholar 

  36. Michalek, L.; Mundsinger, K.; Barner-Kowollik, C.; Barner, L. The long and the short of polymer grafting. Polym. Chem. 2019, 10, 54–59.

    Article  CAS  Google Scholar 

  37. Michalek, L.; Mundsinger, K.; Barner, L.; Barner-Kowollik, C. Quantifying solvent effects on polymer surface grafting. ACS Macro Lett. 2019, 800–805.

  38. Zhao, B.; Brittain, W. J. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710.

    Article  CAS  Google Scholar 

  39. Kim, M.; Schmitt, S. K.; Choi, J. W.; Krutty, J. D.; Gopalan, P. From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers 2015, 7, 1346–1378.

    Article  CAS  Google Scholar 

  40. Dimitrov, D. I.; Milchev, A.; Binder, K. Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent. J. Chem. Phys. 2007, 127, 084905.

    Article  CAS  PubMed  Google Scholar 

  41. Verso, F. L.; Egorov, S. A.; Milchev, A.; Binder, K. Spherical polymer brushes under good solvent conditions: molecular dynamics results compared to density functional theory. J. Chem. Phys. 2010, 133, 184901.

    Article  PubMed  CAS  Google Scholar 

  42. Rossi, G.; Elliott, I. G.; Ala-Nissila, T.; Faller, R. Molecular dynamics study of a MARTINI coarse-grained polystyrene brush in good solvent: structure and dynamics. Macromolecules 2012, 45, 563–571.

    Article  CAS  Google Scholar 

  43. Rossner, C. Consequences of end-group fidelity for the quantitative analysis of surface grafting of polymers. ACS Macro Lett. 2020, 9, 422–425.

    Article  CAS  PubMed  Google Scholar 

  44. Benková, Z.; D. S. Cordeiro, M. N. Molecular dynamics simulations of poly(ethylene oxide) grafted onto silica immersed in melt of homopolymers. Langmuir 2015, 31, 10254–10264.

    Article  PubMed  CAS  Google Scholar 

  45. Daoulas, K. C.; Terzis, A. F.; Mavrantzas, V. G. Detailed atomistic Monte Carlo simulation of grafted polymer melts. I. Thermodynamic and conformational properties. J. Chem. Phys. 2002, 116, 11028–11038.

    Article  CAS  Google Scholar 

  46. Bedrov, D.; Smith, G. D. Molecular dynamics simulation study of the structure of poly(ethylene oxide) brushes on nonpolar surfaces in aqueous solution. Langmuir 2006, 22, 6189–6194.

    Article  CAS  PubMed  Google Scholar 

  47. Ndoro, T. V. M.; Böhm, M. C.; Müller-Plathe, F. Interface and interphase dynamics of polystyrene chains near grafted and ungrafted silica nanoparticles. Macromolecules 2012, 45, 171–179.

    Article  CAS  Google Scholar 

  48. Cheng, L.; Cao, D. Aggregation of polymer-grafted nanoparticles in good solvents: a hierarchical modeling method. J. Chem. Phys. 2011, 135, 124703.

    Article  PubMed  CAS  Google Scholar 

  49. Lo Verso, F.; Yelash, L.; Egorov, S. A.; Binder, K. Effect of the solvent quality on the structural rearrangement of spherical brushes: coarse-grained models. Soft Matter 2012, 8, 4185–4196.

    Article  CAS  Google Scholar 

  50. Cordeiro, R. M.; Zschunke, F.; Müller-Plathe, F. Mesoscale molecular dynamics simulations of the force between surfaces with grafted poly(ethylene oxide) chains derived from atomistic simulations. Macromolecules 2010, 43, 1583–1591.

    Article  CAS  Google Scholar 

  51. Vogiatzis, G. G.; Theodorou, D. N. Multiscale molecular simulations of polymer-matrix nanocomposites. Arch. Comput. Methods Eng. 2018, 25, 591–645.

    Article  PubMed  Google Scholar 

  52. Huang, C.; Zhu, Y.; Man, X. Block copolymer thin films. Phys. Rep. 2021, 932, 1–36.

    Article  CAS  Google Scholar 

  53. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1942, 10, 51–61.

    Article  CAS  Google Scholar 

  54. Anderson, J. A.; Travesset, A. Coarse-grained simulations of gels of nonionic multiblock copolymers with hydrophobic groups. Macromolecules 2006, 39, 5143–5151.

    Article  CAS  Google Scholar 

  55. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    Article  CAS  Google Scholar 

  56. Zimm, B. H. Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J. Chem. Phys. 1948, 1948, 1099–1116.

    Article  Google Scholar 

  57. NcNaught, A. D.; Wilkinson, A. Compendium of Chemical Terminology — The Gold Book, 2nd Ed. Blackwell Science: Oxford, 1997.

    Google Scholar 

  58. Xue, Y. H.; Quan, W.; Qu, F. H.; Liu, H. Conformation of polydispersed chains grafted on nanoparticles. Mol. Simulat. 2015, 41, 298–310.

    Article  CAS  Google Scholar 

  59. Magda, J. J.; Tirrell, M.; Davis, H. T. Molecular dynamics of narrow, liquid-filled pores. J. Chem. Phys. 1985, 83, 1888–1901.

    Article  CAS  Google Scholar 

  60. Xue, Y. H.; Quan, W.; Liu, X. L.; Han, C.; Li, H.; Liu, H. Dependence of grafted polymer property on the initiator site distribution in surface-initiated polymerization: a computer simulation study. Macromolecules 2017, 50, 6482–6488.

    Article  CAS  Google Scholar 

  61. Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z.-Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013, 34, 2197–2211.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, H.; Zhu, Y. L.; Lu, Z. Y.; Müller-Plathe, F. A kinetic chain growth algorithm in coarse-grained simulations. J. Chem. Phys. 2016, 37, 2634–2646.

    CAS  Google Scholar 

  63. Marcus, Y. The Properties of Solvents. John Wiley and Sons, Ltd., England, 1999.

    Google Scholar 

  64. Liu, H.; Li, M.; Lu, Z. Y.; Zhang, Z. G.; Sun, C. C. Influence of surface-initiated polymerization rate and initiator density on the properties of polymer brushes. Macromolecules 2009, 42, 2863–2872.

    Article  CAS  Google Scholar 

  65. Liu, H.; Li, M.; Lu, Z. Y.; Zhang, Z. G.; Sun, C. C.; Cui, T. Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system. Macromolecules 2011, 44, 8650–8660.

    Article  CAS  Google Scholar 

  66. Tsujii, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv. Polym. Sci. 2006, 197, 1–45.

    Article  CAS  Google Scholar 

  67. Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y. Dissipative particle dynamics simulation study on the binary mixture phase separation coupled with polymerization. J. Chem. Phys. 2007, 127, 144903.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, H.; Xue, Y. H.; Qian, H. J.; Lu, Z. Y.; Sun, C. C. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations. J. Chem. Phys. 2008, 129, 024902.

    Article  PubMed  CAS  Google Scholar 

  69. Michalek, L.; Mundsinger, K.; Barner, L.; Barner-Kowollik, C. Quantifying solvent effects on polymer surface grafting. ACS Macro Lett. 2019, 8, 800–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Fruitful discussions with Prof. Guo-Jie Zhang of Guangzhou University is greatly appreciated. This work was financially supported by the National Natural Science Foundation of China (Nos. 22022303 and 21774051) and Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. H. Liu gratefully acknowledges the support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Additional information

Notes

The authors declare no competing financial interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, CX., Lu, H., Huang, BY. et al. Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property. Chin J Polym Sci 40, 817–833 (2022). https://doi.org/10.1007/s10118-022-2699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2699-z

Keywords

Navigation