Log in

A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A near-infrared non-fullerene acceptor (NFA) BDTIC, based on thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene unit (heptacyclic S,N-heteroacene) as core, is designed and synthesized. The aromatic pyrrole ring with strong electron-donating ability in the core enhances the intramolecular charge transfer effect, finely tunes the optical bandgap and absorption profile of BDTIC, and thus results in a narrowed optical bandgap (E optg ) of 1.38 eV and a near-infrared absorption to 900 nm. When BDTIC is paired with donor polymer PBDB-T to fabricate organic solar cells, the optimized device achieves a best power conversion efficiency of 12.1% with a short-circuit current density of 20.0 mA·cm−2 and an open-circuit voltage of 0.88 V. The photovoltaic performance benefits from the broad absorption, weak bimolecular recombination, efficient charge separation and collection, and favorable blend morphology. This work demonstrates that thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene unit (heptacyclic S,N-heteroacene) is a promising building unit to construct high-performance NFAs by enhancing the intramolecular charge transfer effect, broadening absorption as well as maintaining good intermolecular stacking property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater.2010, 22, 3839–3856.

    CAS  PubMed  Google Scholar 

  2. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res.2012, 45, 723–733.

    CAS  PubMed  Google Scholar 

  3. Qu, J. F.; Liu, J.; Li, S. Da; **e, Z. Y.; Geng, Y. H. Donor-acceptor conjugated cooligomers for single molecule solar cells. Chinese J. Polym. Sci.2013, 31, 815–822.

    CAS  Google Scholar 

  4. Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. 25th Anniversary article: rise to power-OPV-based solar parks. Adv. Mater.2014, 26, 29–39.

    CAS  PubMed  Google Scholar 

  5. Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Achieving efficient thick film all-polymer solar cells using a green solvent additive. Chinese J. Polym. Sci.2020, 38, 323–331.

    CAS  Google Scholar 

  6. Zhang, K.; Liu, X.; Xu, B.; Cui, Y.; Sun, M.; Hou, J. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci.2017, 35, 219–229.

    CAS  Google Scholar 

  7. Liao, Q.; Kang, Q.; Yang, Y.; An, C.; Xu, B.; Hou, J. Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells. Adv. Mater.2020, 32, 1906557.

    CAS  Google Scholar 

  8. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, C.; Lau, T. K.; Zhang, G.; Lu, X.; Yip, H. L.; So, S. K.; Beaupré, S.; Mainville, M.; Johnson, P. A.; Leclerc, M.; Chen, H.; Peng, H.; Li, Y.; Zou, Y. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater.2019, 31, 1–8.

    CAS  Google Scholar 

  9. Yan, C.; Liu, T.; Chen, Y.; Ma, R.; Tang, H.; Li, G.; Li, T.; **ao, Y.; Yang, T.; Lu, X.; Zhan, X.; Yan, H.; Li, G.; Tang, B. ITC-2Cl: a versatile middle-bandgap nonfullerene acceptor for high-efficiency panchromatic ternary organic solar cells. Sol. RRL2020, 4, 1900377.

    CAS  Google Scholar 

  10. Chen, T. W.; Peng, K. L.; Lin, Y. W.; Su, Y. J.; Ma, K. J.; Hong, L.; Chang, C. C.; Hou, J.; Hsu, C. S. A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells. J. Mater. Chem. A2020, 8, 1131–1137.

    CAS  Google Scholar 

  11. Dong, S.; Zhang, K.; Jia, T.; Zhong, W.; Wang, X.; Huang, F.; Cao, Y. Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15%. EcoMat2019, 1, 12006.

    Google Scholar 

  12. Geng, S. Z.; Yang, W. T.; Gao, J.; Li, S. X.; Shi, M. M.; Lau, T. K.; Lu, X. H.; Li, C. Z.; Chen, H. Z. Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells. Chinese J. Polym. Sci.2019, 37, 1005–1014.

    CAS  Google Scholar 

  13. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; **ao, Z.; Ding, L.; **a, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science2018, 361, 1094–1098.

    CAS  Google Scholar 

  14. Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O. M.; El-Labban, A.; Schwingenschlögl, U.; Tung, V.; McCulloch, I.; Laquai, F.; Anthopoulos, T. D. 17% Efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv. Mater.2019, 31, 1902965.

    CAS  Google Scholar 

  15. Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C. Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci.2020, 13, 635–645.

    CAS  Google Scholar 

  16. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater.2015, 27, 1170–1174.

    CAS  PubMed  Google Scholar 

  17. Mihailetchi, B. V. D.; van Duren, J. K. J; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M. Electron transport in a methanofullerene. Int. J. Eng. Sci. Technol.2010, 2, 610–617.

    Google Scholar 

  18. Huang, F.; Bo, Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 988–1046.

    Google Scholar 

  19. Wu, Y.; Zheng, Y.; Yang, H.; Sun, C.; Dong, Y.; Cui, C.; Yan, H.; Li, Y. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%. Sci. China Chem.2019, 63, 265–271.

    Google Scholar 

  20. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem.2019, 62, 746–752.

    CAS  Google Scholar 

  21. Lin, Y.; Li, T.; Zhao, F.; Han, L.; Wang, Z.; Wu, Y.; He, Q.; Wang, J.; Huo, L.; Sun, Y.; Wang, C.; Ma, W.; Zhan, X. Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv. Energy Mater.2016, 6, 1600854.

    Google Scholar 

  22. Wang, W.; Lu, H.; Chen, Z.; Jia, B.; Li, K.; Ma, W.; Zhan, X. Highperformance NIR-sensitive fused tetrathienoacene electron acceptors. J. Mater. Chem. A2020, 8, 3011–3017.

    CAS  Google Scholar 

  23. Jia, B.; Wang, J.; Wu, Y.; Zhang, M.; Jiang, Y.; Tang, Z.; Russell, T. P.; Zhan, X. Enhancing the performance of a fused-ring electron acceptor by unidirectional extension. J. Am. Chem. Soc.2019, 141, 19023–19031.

    CAS  PubMed  Google Scholar 

  24. Wang, H.; Cao, J.; Yu, J.; Zhang, Z.; Geng, R.; Yang, L.; Tang, W. Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells. J. Mater. Chem. A2019, 7, 4313–4333.

    CAS  Google Scholar 

  25. Xu, S.; Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. A twisted thieno[3,4-b]thiophene-based electron acceptor featuring a 14-TT-electron indenoindene core for high-performance organic photovoltaics. Adv. Mater.2017, 29, 1–6.

    Google Scholar 

  26. Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C. Z.; Liu, H.; Li, X.; Liu, F.; Chen, Y.; Chen, H.; Jen, A. K. Y. Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors. Chem. Mater.2018, 30, 5429–5434.

    CAS  Google Scholar 

  27. Sun, J.; Ma, X.; Zhang, Z.; Yu, J.; Zhou, J.; Yin, X.; Yang, L.; Geng, R.; Zhu, R.; Zhang, F.; Tang, W. Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv. Mater.2018, 30, 1–8.

    Google Scholar 

  28. Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X. Highperformance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc.2016, 138, 4955–4961.

    CAS  PubMed  Google Scholar 

  29. Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc.2015, 137, 14149–14157.

    CAS  PubMed  Google Scholar 

  30. Liu, Q.; **ao, Z.; Li, T.; Yang, S.; You, W.; Wang, M.; Ding, L. Understanding the side-chain effects on A-D-A acceptors: inplane and out-of-plane. Mater. Chem. Front.2018, 2, 1563–1567.

    CAS  Google Scholar 

  31. Feng, H.; Song, X.; Zhang, M.; Yu, J.; Zhang, Z.; Geng, R.; Yang, L.; Liu, F.; Baran, D.; Tang, W. Side chain engineering on dithieno[3,2-b:2,3-d]pyrrol fused electron acceptors for efficient organic solar cells. Mater. Chem. Front.2019, 3, 702–708.

    CAS  Google Scholar 

  32. Li, Y.; Zhong, L.; Gautam, B.; Bin, H.; Lin, J.; Wu, F.; Zhang, Z.; Jiang, Z.; Zhang, Z.; Gundogdu, K.; Li, Y.; Liao, L. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci.2017, 10, 1610–1620.

    CAS  Google Scholar 

  33. Warnan, J.; Cabanetos, C.; El Labban, A.; Hansen, M. R.; Tassone, C.; Toney, M. F.; Beaujuge, P. M. Ordering effects in benzo[1,2-b:4,5-b′]difuran-thieno[3,4-c]pyrrole-4,6-dione polymers with < 7% solar cell efficiency. Adv. Mater.2014, 26, 4357–4362.

    CAS  PubMed  Google Scholar 

  34. Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc.2017, 139, 17114–17119.

    CAS  PubMed  Google Scholar 

  35. Shi, X.; Chen, J.; Gao, K.; Zuo, L.; Yao, Z.; Liu, F.; Tang, J.; Jen, A. K. Y. Terthieno[3,2-b]thiophene (6T) based low bandgap fused-ring electron acceptor for highly efficient solar cells with a high short-circuit current density and low open-circuit voltage loss. Energy Mater.2018, 8, 2–9.

    Google Scholar 

  36. Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B Condens. Matter Mater. Phys.2003, 67, 1–16.

    CAS  Google Scholar 

  37. Li, W.; Cai, J.; Yan, Y.; Cai, F.; Li, S.; Gurney, R. S.; Liu, D.; McGettrick, J. D.; Watson, T. M.; Li, Z.; Pearson, A. J.; Lidzey, D. G.; Hou, J.; Wang, T. Correlating three-dimensional morphology with function in PBDB-T:IT-M non-fullerene organic solar cells. Sol. RRL2018, 2, 1800114.

    Google Scholar 

  38. Long, G.; Wu, B.; Solanki, A.; Yang, X.; Kan, B.; Liu, X.; Wu, D.; Xu, Z.; Wu, W. R.; Jeng, U. S.; Lin, J.; Li, M.; Wang, Y.; Wan, X.; Sum, T. C.; Chen, Y. New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells. Adv. Energy Mater.2016, 6, 1600961.

    Google Scholar 

  39. **ao, M.; Zhang, K.; **, Y.; Yin, Q.; Zhong, W.; Huang, F.; Cao, Y. Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability. Nano Energy2018, 48, 53–62.

    CAS  Google Scholar 

  40. Duan, C.; Zhong, C.; Liu, C.; Huang, F.; Cao, Y. Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material. Chem. Mater.2012, 24, 1682–1689.

    CAS  Google Scholar 

  41. Zhang, K.; Hu, Z.; Sun, C.; Wu, Z.; Huang, F.; Cao, Y. Toward solution-processed high-performance polymer solar cells: from material design to device engineering. Chem. Mater.2017, 29, 141–148.

    CAS  Google Scholar 

  42. Goh, C.; Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Fŕchet, J. M. J. Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl. Phys. Lett.2005, 86, 122110–3.

    Google Scholar 

  43. Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; **e, R.; Tang, X.; An, K.; **n, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy2018, 3, 1051–1058.

    CAS  Google Scholar 

  44. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymerfullerene solar cells. Appl. Phys. Lett.2005, 86, 123509.

    Google Scholar 

  45. Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymerfullerene bulk heterojunction solar cells. Phys. Rev. B Condens. Matter Mater. Phys.2010, 82, 1–36.

    Google Scholar 

  46. Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys. Conf. Ser.2010, 247, 012007.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOST, the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), and the Pearl River Nova Program of Guangzhou (NO. 201906010074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhang or Fei Huang.

Electronic Supplementary Information

10118_2020_2440_MOESM1_ESM.pdf

A Near-Infrared Non-Fullerene Acceptor with Thienopyrrole-Expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ma, SS., Zhang, K. et al. A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells. Chin J Polym Sci 39, 35–42 (2021). https://doi.org/10.1007/s10118-020-2440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2440-8

Keywords

Navigation