Log in

pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

pH-responsive micelles with a biodegradable PLA core and a mixed PEG/PDPA shell were prepared by self-assembly of poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) and poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(lactic acid) (PDPA-b-PLA). The micellization status with different pH and the enzyme degradation behavior were characterized by 1H-NMR spectroscopy, dynamic light scattering measurement and zeta potential test. The pH turning point of PDPA block was determined to be in the range of 5.5−7.0. While the pH was above 7.0, the PDPA block collapsed onto the PLA core and could protect the PLA core from invasion of enzyme, as a result, the micelle exhibited a resistance to the enzymatic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veeren, A.; Bhaw-Luximon, A.; Mukhopadhyay, D.; Jhurry, D. Mixed poly(vinyl pyrrolidone)-based drug-loaded nanomicelles shows enhanced efficacy against pancreatic cancer cell lines. Eur. J. Pharm. Sci. 2017, 102, 250–260

    Article  CAS  PubMed  Google Scholar 

  2. Claro, B.; Zhu, K.; Bagherifam, S.; Silva, S. G.; Griffiths, G.; Knudsen, K. D.; Marques, E. F.; Nyström, B. Phase behavior, microstructure and cytotoxicity in mixtures of a charged triblock copolymer and an ionic surfactant. Eur. Polym. J. 2016, 75, 461–473

    Article  CAS  Google Scholar 

  3. Tang, M.; Zheng, Q.; Tirelli, N.; Hu, P.; Tang, Q.; Gu, J.; He, Y. Dual thermo/oxidation-responsive block copolymers with self-assembly behaviour and synergistic release. React. Funct. Polym. 2017, 110, 55–61

    Article  CAS  Google Scholar 

  4. Balasubramanian, P. V.; Herranz-Blanco, B.; Almeida, P. V.; Hirvonen, J.; Santos, H. A. Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Prog. Polym. Sci. 2016, 60, 51–85

    Article  CAS  Google Scholar 

  5. Zhou, L.; Yu, L.; Ding, M.; Li, J.; Tan, H.; Wang, Z.; Fu, Q. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules 2011, 44, 857–864

    Article  CAS  Google Scholar 

  6. Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of poly(lactic) acid. Int. Biodeter. Biodegr. 2017, 117, 215–223

    Article  CAS  Google Scholar 

  7. Shi, Y.; Sun, F.; Wang, D.; Zhang, R.; Dou, C.; Liu, W.; Sun, K.; Li, Y. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle. J. Nanopart. Res. 2013, 15, 2002–2011

    Article  CAS  Google Scholar 

  8. Garofalo, C.; Capuano, G.; Sottile, R.; Tallerico, R.; Adami, R.; Reverchon, E.; Carbone, E.; Izzo, L.; Pappalardo, D. Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 2014, 15, 403–415

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, S.; Maiti, P. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv. 2016, 6, 67449–67480

    Article  CAS  Google Scholar 

  10. Wang, Z.; Yu, L.; Ding, M.; Tan, H.; Li, J.; Fu, Q. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym. Chem. 2011, 2, 601–607

    Article  CAS  Google Scholar 

  11. Marschutz, M. K.; Bernkop-Schnurch, A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials 2000, 21, 1499–1507

    Article  CAS  PubMed  Google Scholar 

  12. Guo, P.; Song, S.; Li, Z.; Tian, Y.; Zheng, J.; Yang, X.; Pan, W. In vitro and in vivo evaluation of APRPG-modified angiogenic vessel targeting micelles for anticancer therapy. Int. J. Pharmaceut. 2015, 486, 356–366

    Article  CAS  Google Scholar 

  13. Tangsangasaksri, M.; Takemoto, H.; Naito, M.; Maeda, Y.; Sueyoshi, D. siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 2016, 17, 246–255

    Article  CAS  PubMed  Google Scholar 

  14. Guthi, J. S.; Yang, S. G.; Huang, G.; Li, S.; Khemtong, C.; Kessinger, C. W.; Peyton, M.; Minna, J. D.; Brown, K. C.; Gao, J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharmaceut. 2010, 7, 32–40

    Article  CAS  Google Scholar 

  15. Moretton, M. A.; Bernabeu, E.; Grotz, E.; Gonzalez, L.; Zubillaga, M.; Chiappetta, D. A. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells. Eur. J. Pharm. Biopharm. 2017, 114, 305–316

    Article  CAS  PubMed  Google Scholar 

  16. Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, Y.; Ma, R.; Zhang, Z.; He, H.; Wang, Y.; Qu, A.; An, Y.; Zhu, X. X.; Shi, L. Complex micelles with a responsive shell for controlling of enzymatic degradation. Polymer 2012, 53, 3559–3565

    Article  CAS  Google Scholar 

  18. Hu, J.; Liu, G.; Wang, C.; Liu, T.; Zhang, G.; Liu, S. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal esca** pH-responsive micellar nanocarriers. Biomacromolecules 2014, 15, 4293–4301

    Article  CAS  PubMed  Google Scholar 

  19. FitzGerald, P. A.; Gupta, S.; Wood, K.; Perrier, S.; Warr, G. G. Temperature-and pH-responsive micelles with collapsible poly(A -isopropylacrylamide) headgroups. Langmuir 2014, 30, 7986–7992

    Article  CAS  PubMed  Google Scholar 

  20. Guo, X.; Shi, C.; Yang, G.; Wang, J.; Cai, Z.; Zhou, S. Dualresponsive polymer micelles for target-cell-specific anticancer drug delivery. Chem. Mater. 2014, 26, 4405–4418

    Article  CAS  Google Scholar 

  21. Gao, W.; Chan, J. M.; Farokhzad, O. C. pH-responsive nanoparticles for drug delivery. Mol. Pharmaceut. 2010, 7, 1913–1920

    Article  CAS  Google Scholar 

  22. Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hales, M.; Barner-Kowollik, C.; Davis, T. P.; Stenzel, M. H. Shell-cross-linked vesicles synthesized from block copolymers of poly(D, L-lactide) and poly(A -isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 2004, 20, 10809–10817

    Article  CAS  PubMed  Google Scholar 

  25. Wu, C.; Ma, R.; He, H.; Zhao, L.; Gao, H.; An, Y.; Shi, L. Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol. Biosci. 2009, 9, 1185–1193

    Article  CAS  PubMed  Google Scholar 

  26. Taktak, F. F.; Bütün, V. Synthesis and physical gels of pH-and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 2010, 51, 3618–3626

    Article  CAS  Google Scholar 

  27. Li, Y. M.; Yu, H. S.; Qian, Y. F.; Hu, J. M.; Liu, S. Y. Amphiphilic star copolymer-based bimodal fluorogenic/magnetic resonance probes for concomitant bacteria detection and inhibition. Adv. Mater. 2014, 26, 6734–6741

    Article  CAS  PubMed  Google Scholar 

  28. Heald, C. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir 2002, 18, 3669–3675

    Article  CAS  Google Scholar 

  29. Gan, Z.; Jim, T. F.; Li, M.; Yuer, Z.; Wang, S.; Wu, C. Enzymatic biodegradation of Poly(ethylene oxide-è-scaprolactone) diblock copolymer and its potential biomedical applications. Macromolecules 1999, 32, 590–594

    Article  CAS  Google Scholar 

  30. Jiang, Z.; Zhu, Z.; Liu, C.; Hu, Y.; Jiang, X. Non-enzymatic and enzymatic degradation of poly(ethylene glycol)-è-poly(scaprolactone) diblock copolymer micelles in aqueous solution. Polymer 2008, 49, 5513–5519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports by the National Natural Science Foundation of China (Nos. 21404082 and 51503104), the State Key Laboratory of Medicinal Chemical Biology of China (No. 201603001) and Natural Science Foundation of Tian** (Nos. 15JCQNJC05900, 15JCQNJC13400 and 16JCQNJC03000) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Li An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YL., Qu, AT., Ma, RJ. et al. pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation. Chin J Polym Sci 36, 1262–1268 (2018). https://doi.org/10.1007/s10118-018-2149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2149-0

Keywords

Navigation