Log in

Fabrication of polythiophene patterns through blending of a thermally curable polythiophene with poly(methyl methacrylate) and selective thermal curation

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we demonstrate a novel method for fabricating polythiophene patterns, i.e., cylindrical holes and cylinders, through blending of a thermally curable polythiophene carrying with tertiary ester groups (PT-tert-ESTER) and poly(methyl methacrylate) (PMMA), followed by thermal conversion of the PT-tert-ESTER to an insoluble polythiophene via low-temperature cleavage of the tertiary ester groups and removal of the PMMA component via ultraviolet degradation. We show that the surface polarity of substrates, the mass ratio of PT-tert-ESTER to PMMA in the blend solutions as well as the concentration of the blend solutions strongly influence the formation of the polythiophene patterns. Cylindrical holes are more readily formed on less polar substrates when a PT-tert-ESTER dominated blend solution is used, while cylinders are more readily formed on more polar substrates when a PMMA dominated blend solution is used. Moreover, the diameters of both the cylindrical holes and the cylinders decrease as the PT-tert-ESTER concentration is increased in the respective ranges of the PT-tert-ESTER/PMMA ratios where the patterns are formed. Grazing incident X-ray diffraction data have indicated that the patterning of the PT-tert-ESTER component in the blend films improves the crystallinity of PT-tert-ESTER as well as the molecular packing of the insoluble polythiophene in the resultant patterned polythiophene films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam, J.W.Y. and Tang, B.Z., Acc. Chem. Res., 2005, 38(9): 745

    Article  CAS  Google Scholar 

  2. Lee, T.W., Adv. Funct. Mater., 2007, 17(16): 3128

    Article  CAS  Google Scholar 

  3. Lee, T.W., Chung, Y., Kwon, O. and Park, J.J., Adv. Funct. Mater., 2007, 17(3): 390

    Article  CAS  Google Scholar 

  4. Dyreklev, P., Berggren, M., Inganas, O., Andersson, M.R., Wennerstrom, O. and Hjertberg, T., Adv. Mater., 1995, 7(1): 43

    Article  CAS  Google Scholar 

  5. Goh, C., Kline, R.J., McGehee, M.D., Kadnikova, E.N. and Frechet, J.M.J., Appl. Phys. Lett., 2005, 86(12): 122110

    Article  Google Scholar 

  6. Braun, D., Gustafsson, G., McBranch, D. and Heeger, A.J., J. Appl. Phys., 1992, 72(2): 564

    Article  CAS  Google Scholar 

  7. Yang, H.C., Shin, T.J., Yang, L., Cho, K., Ryu, C.Y. and Bao, Z.N., Adv. Funct. Mater., 2005, 15(4): 671

    Article  CAS  Google Scholar 

  8. Ong, B.S., Wu, Y.L., Liu, P. and Gardner, S., Adv. Mater., 2005, 17(9): 1141

    Article  CAS  Google Scholar 

  9. McCulloch, I., Bailey, C., Giles, M., Heeney, M., Love, I., Shkunov, M., Sparrowe, D. and Tierney, S., Chem. Mater., 2005, 17(6): 1381

    Article  CAS  Google Scholar 

  10. Park, Y.D., Kim, D.H., Lim, J.A., Cho, J.H., Jang, Y., Lee, W.R., Park, J.H. and Cho, K., J. Phys. Chem. C, 2008, 112(5): 1705

    Article  CAS  Google Scholar 

  11. Scharber, M.C., Wuhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J. and Brabec, C.L., Adv. Mater., 2006, 18(6): 789

    Article  CAS  Google Scholar 

  12. Chochos, C.L., Economopoulos, S.P., Deimede, V., Gregoriou, V.G., Lloyd, M.T., Malliaras, G.G. and Kallitsis, J.K., J. Phys. Chem. C, 2007, 111(28): 10732

    Article  CAS  Google Scholar 

  13. Geng, J.X., Kong, B.S., Yang, S.B., Youn, S.C., Park, S., Joo, T. and Jung, H.T., Adv. Funct. Mater., 2008, 18(18): 2659

    Article  CAS  Google Scholar 

  14. Geng, J.X. and Zeng, T.Y., J. Am. Chem. Soc., 2006, 128(51): 16827

    Article  CAS  Google Scholar 

  15. Qin, R.P., Jiang, Y.R., Zhang, H.X., Zhang, K.X., Zhang, Q.Y. and Chang, F.G., Chinese J. Polym. Sci., 2015, 33(3): 490

    Article  CAS  Google Scholar 

  16. Keshtov, M.L., Marochkin, D.V., Fu, Y.Y., **e, Z.Y., Geng, Y.H., Kochurov, V.S. and Khokhlov, A.R., Chinese J. Polym. Sci., 2014, 32(7): 844

    Article  CAS  Google Scholar 

  17. Li, B., Sauve, G., Iovu, M.C., Jeffries-El, M., Zhang, R., Cooper, J., Santhanam, S., Schultz, L., Revelli, J.C., Kusne, A.G., Kowalewski, T., Snyder, J.L., Weiss, L.E., Fedder, G.K., McCullough, R.D. and Lambeth, D.N., Nano Lett., 2006, 6(8): 1598

    Article  CAS  Google Scholar 

  18. Nilsson, K.P.R. and Inganas, O., Nat. Mater., 2003, 2(6): 419

    Article  CAS  Google Scholar 

  19. Tang, Y.L., He, F., Yu, M.H., Feng, F.D., An, L.L., Sun, H., Wang, S., Li, Y.L. and Zhu, D.B., Macromol. Rapid Commun., 2006, 27(6): 389

    Article  CAS  Google Scholar 

  20. Li, C., Numata, M., Takeuchi, M. and Shinkai, S., Angew. Chem., Int. Ed., 2005, 44(39): 6371

    Article  CAS  Google Scholar 

  21. Meng, D., Yang, S., Sun, D., Zeng, Y., Sun, J., Li, Y., Yan, S., Huang, Y., Bielawski, C.W. and Geng, J., Chem. Sci., 2014, 5(8): 3130

    Article  CAS  Google Scholar 

  22. Yang, S., Meng, D., Sun, J., Hou, W., Ding, Y., Jiang, S., Huang, Y., Huang, Y. and Geng, J., RSC Adv., 2014, 4(48): 25051

    Article  CAS  Google Scholar 

  23. Yang, S., Meng, D., Sun, J., Huang, Y., Huang, Y. and Geng, J., ACS Appl. Mater. Interfaces, 2014, 6(10): 7686

    Article  CAS  Google Scholar 

  24. Zhang, H., Zhang, G., Xu, J.K., Wen, Y.P., Ding, W.C., Zhang, J., Ming, S.L. and Zhen, S.J., Chinese. J. Polym. Sci., 2016, 34(2): 229

    Article  CAS  Google Scholar 

  25. Memon, M.A., Bai, W., Sun, J.H., Imran, M., Phulpoto, S.N., Yan, S.K., Huang, Y. and Geng, J.X., ACS Appl. Mater. Interfaces, 2016, 8(18): 11711

    Article  Google Scholar 

  26. Meng, D., Yang, S., Guo, L., Li, G., Ge, J., Huang, Y., Bielawski, C.W. and Geng, J., Chem. Commun., 2014, 50(92): 14345

    Article  CAS  Google Scholar 

  27. Erb, T., Zhokhavets, U., Gobsch, G., Raleva, S., Stuhn, B., Schilinsky, P., Waldauf, C. and Brabec, C.J., Adv. Funct. Mater., 2005, 15(7): 1193

    Article  CAS  Google Scholar 

  28. Kim, D.H., Park, Y.D., Jang, Y.S., Yang, H.C., Kim, Y.H., Han, J.I., Moon, D.G., Park, S.J., Chang, T.Y., Chang, C.W., Joo, M.K., Ryu, C.Y. and Cho, K.W., Adv. Funct. Mater., 2005, 15(1): 77

    Article  Google Scholar 

  29. Chen, F.C., Lin, Y.K. and Ko, C.J., Appl. Phys. Lett., 2008, 92(2): 023307

    Article  Google Scholar 

  30. Yang, F., Shtein, M. and Forrest, S.R., Nat. Mater., 2005, 4(1): 37

    Article  Google Scholar 

  31. Yang, F., Shtein, M. and Forrest, S.R., J. Appl. Phys., 2005, 98(1): 014906

    Article  Google Scholar 

  32. Chen, Y.Z., Wang, Z.B., Gong, Y.M., Huang, H.Y. and He, T.B., J. Phys. Chem. B, 2006, 110(4): 1647

    Article  CAS  Google Scholar 

  33. Lee, J.I., Cho, S.H., Park, S.M., Kim, J.K., Kim, J.K., Yu, J.W., Kim, Y.C. and Russell, T.P., Nano Lett., 2008, 8(8): 2315

    Article  CAS  Google Scholar 

  34. Wei, J.H., Coffey, D.C. and Ginger, D.S., J. Phys. Chem. B, 2006, 110(48): 24324

    Article  CAS  Google Scholar 

  35. Park, L.Y., Munro, A.M. and Ginger, D.S., J. Am. Chem. Soc., 2008, 130(47): 15916

    Article  CAS  Google Scholar 

  36. Yim, K.H., Zheng, Z.J., Friend, R.H., Huck, W.T.S. and Kim, J.S., Adv. Funct. Mater., 2008, 18(19): 2897

    Article  CAS  Google Scholar 

  37. Im, S.G., Kim, B.S., Lee, L.H., Tenhaeff, W.E., Hammond, P.T. and Gleason, K.K., Macromol. Rapid Commun., 2008, 29(20): 1648

    Article  CAS  Google Scholar 

  38. Khanduyeva, N., Senkovskyy, V., Beryozkina, T., Horecha, M., Stamm, M., Uhrich, C., Riede, M., Leo, K. and Kiriy, A., J. Am. Chem. Soc., 2009, 131(1): 153

    Article  CAS  Google Scholar 

  39. Zhang, F.L., Nyberg, T. and Inganas, O., Nano Lett., 2002, 2(12): 1373

    Article  CAS  Google Scholar 

  40. Li, D.W. and Guo, L.J., J. Phys. D: Appl. Phys., 2008, 41(10): 105115

    Article  Google Scholar 

  41. Liu, J.S., Kadnikova, E.N., Liu, Y.X., McGehee, M.D. and Frechet, J.M.J., J. Am. Chem. Soc., 2004, 126(31): 9486

    Article  CAS  Google Scholar 

  42. Bjerring, M., Nielsen, J.S., Nielsen, N.C. and Krebs, F.C., Macromolecules, 2007, 40(16): 6012

    Article  CAS  Google Scholar 

  43. Bower, D.I., “An introduction to polymer physics”, Cambridge University Press, Cambridge, 2002

    Book  Google Scholar 

  44. Moons, E., J. Phys.: Condens. Matter, 2002, 14(47): 12235

    CAS  Google Scholar 

  45. Walheim, S., Ramstein, M. and Steiner, U., Langmuir, 1999, 15(14): 4828

    Article  CAS  Google Scholar 

  46. Walheim, S., Boltau, M., Mlynek, J., Krausch, G. and Steiner, U., Macromolecules, 1997, 30(17): 4995

    Article  CAS  Google Scholar 

  47. Yang, X.N., Loos, J., Veenstra, S.C., Verhees, W.J.H., Wienk, M.M., Kroon, J.M., Michels, M.A.J. and Janssen, R.A.J., Nano Lett., 2005, 5(4): 579

    Article  CAS  Google Scholar 

  48. Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.S. and Ree, M., Nat. Mater., 2006, 5(3): 197

    Article  CAS  Google Scholar 

  49. Prosa, T.J., Winokur, M.J. and McCullough, R.D., Macromolecules, 1996, 29(10): 3654

    Article  CAS  Google Scholar 

  50. Chai, L.G., Zhou, H.X., Sun, X.L., Li, H.H., Yan, S.K. and Yang, X.Q., Chinese J. Polym. Sci., 2016, 34(4): 513

    Article  CAS  Google Scholar 

  51. Hou, W.P., Zhao, N.J., Meng, D., Tang, J., Zeng, Y., Wu, Y., Weng, Y.Z.W., Cheng, C.G., Xu, X.L., Li, Y., Zhang, J.P., Huang, Y., Bielawski, C.W. and Geng, J.X., ACS Nano, 2016, 10(5): 5189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Tae Jung.

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21274158 and 91333114), the National Research Laboratory Program of the Korea Science and Engineering Foundation (KOSEF), the World Class University Program (No. R32-2008-000-10142-0), and the Center for Nanoscale Mechatronics & Manufacturing (08K140100414, CNMM).

Electronic supplementary material

10118_2017_1895_MOESM1_ESM.pdf

Fabrication of Polythiophene Patterns through Blending of a Thermally Curable Polythiophene with Poly(methyl methacrylate) and Selective Thermal Curation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memon, M.A., Sun, Jh., Jung, HT. et al. Fabrication of polythiophene patterns through blending of a thermally curable polythiophene with poly(methyl methacrylate) and selective thermal curation. Chin J Polym Sci 35, 422–433 (2017). https://doi.org/10.1007/s10118-017-1895-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1895-8

Keywords

Navigation