Log in

Improved Hardy–Littlewood–Sobolev Inequality on \({\mathbb{S}^n}\) under Constraints

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we establish an improved Hardy–Littlewood–Sobolev inequality on \({\mathbb{S}^n}\) under higher-order moments constraint. Moreover, by constructing precise test functions, using improved Hardy–Littlewood–Sobolev inequality on \({\mathbb{S}^n}\), we show such inequality is almost optimal in critical case. As an application, we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopèrimètriques et espaces de Sobolev (French). J. Differ. Geom., 11, 573–598 (1976)

    MATH  Google Scholar 

  2. Aubin, T.: Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conformedela courbure scalaire (French). J. Funct. Anal., 32, 148–174 (1979)

    Article  MATH  Google Scholar 

  3. Beckner, W.: Sharp Sobolev inequality on the sphere and the Moser–Trudinger inequality. Ann. of Math., 138, 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, A., Hang, F.: Improved Moser–Trudinger–Onofri inequality under constraints. Comm. Pure Appl. Math., 75, 197–220 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, A., Xu, X., Yang, P.: A perturbation result for prescribing mean curvature. Math. Ann., 310, 473–496 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Wei, W., Wu, N.: Almost sharp Sobolev trace inequalities in the unit ball under constraints. ar**v:2107.08647v3 (2022)

  7. Dou, J., Zhu, M.: Sharp Hardy–Littlewood–Sobolev inequality on the upper half space. Int. Math. Res. Not., (3), 651–687 (2015)

  8. Dou, J., Zhu, M.: Reversed Hardy–Littewood–Sobolev Inequality. Int. Math. Res. Not., (19), 9696–9726 (2015)

  9. Han, Y., Zhu, M.: Hardy–Littlewood–Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260, 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hang, F.: A remark on the concentration compactness principle in critical dimension. Comm. Pure Appl. Math., 75(10), 2245–2278 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hang, F., Wang, X.: Improved Sobolev inequality under constraints. Int. Math. Res. Not., (14), 10822–10857 (2022)

  12. Hang, F., Yang, P.: The Sobolev inequality for Paneitz operator on three manifolds. Calc. Var. Partial Differential Equations, 21, 57–83 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardy, G. H., Littlewood, J. E.: Some properties of fractional integrals. Math. Z., 27, 565–606 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, Vol. 5. New York: New York University, Courant Institute of Mathematical Sciences, Providence, RI: American Mathematical Society, 1999

    Google Scholar 

  15. Li, Y. Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc., 6, 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lieb, E. H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math., 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, P.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam., 1, 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, P.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam., 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ni, Y., Zhu, M.: Steady states for one dimensional curvature flows. Commun. Contemp. Math., 10, 155–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, P., Zhu, M.: On the Paneitz energy on standard three sphere. ESAIM control Optim. Calc. Var., 10, 211–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton, NJ: Princeton University Press, 1971

    MATH  Google Scholar 

  22. Sobolev, S. L.: On a theorem in functional analysis (in Russian). Mat. Sb., 4, 471–497 (1938)

    Google Scholar 

  23. Zhang, S., Han, Y.: Extremal problems of Hardy–Littlewood–Sobolev inequalities on compact Riemannian manifolds. J. Math. Anal. Appl., 495, 124750 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, M.: Prescribing integral curvature equation. Differential Integral Equations, 29, 889–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements The authors would like to thank the referee for his/her careful reading of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Bo Dou.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Supported by the National Science Foundation of China (Grant Nos. 12101380, 12071269), China Postdoctoral Science Foundation (Grant No. 2021M700086), Youth Innovation Team of Shaanxi Universities and the Fundamental Research Funds for the Central Universities (Grant Nos. GK202307001, GK202202007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y.Y., Dou, J.B. Improved Hardy–Littlewood–Sobolev Inequality on \({\mathbb{S}^n}\) under Constraints. Acta. Math. Sin.-English Ser. 39, 2149–2163 (2023). https://doi.org/10.1007/s10114-023-2630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-2630-8

Keywords

MR(2010) Subject Classification

Navigation