Log in

Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Far infrared (FIR) irradiation is commonly used as a convenient, non-contact, non-invasive treatment for diseases such as myocardial ischemia, diabetes, and chronic kidney disease. In this review, we focus on reviewing the potential therapeutic mechanisms of FIR and its cutting-edge applications in cancer detection. Firstly, we searched the relevant literature in the last decade for systematic screening and briefly summarized the biophysical properties of FIR. We then focused on the possible mechanisms of FIR in wound healing, cardiovascular diseases, and other chronic diseases. In addition, we review recent applications of FIR in cancer detection, where Fourier transform infrared spectroscopy and infrared thermography provide additional diagnostic methods for the medical diagnosis of cancer. Finally, we conclude and look into the future development of FIR for disease treatment and cancer detection. As a high-frequency non-ionizing wave, FIR has the advantages of safety, convenience, and low cost. We hope that this review can provide biological information reference and relevant data support for those who are interested in FIR and related high-frequency non-ionizing waves, to promote the further application of FIR in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutton KM, Hunter EG, Logsdon B, Santella B, Kitzman PH (2021) The role of physical therapy in multiple risk factor management poststroke: a sco** review. J Geriatr Phys Ther 44:165–174. https://doi.org/10.1519/jpt.0000000000000248

    Article  PubMed  Google Scholar 

  2. Yang M, Yang T, Mao C (2019) Enhancement of photodynamic cancer therapy by physical and chemical factors. Angew Chem Int Ed 58:14066–14080. https://doi.org/10.1002/anie.201814098

    Article  CAS  Google Scholar 

  3. Hsu YH, Chen YW, Cheng CY, Lee SL, Chiu TH, Chen CH (2019) Detecting the limits of the biological effects of far-infrared radiation on epithelial cells. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-48187-0

    Article  CAS  Google Scholar 

  4. Yao X, Wei W, Li J, Wang L, Xu Z, Wan Y et al (2014) A comparison of mammography, ultrasonography, and far-infrared thermograhy with pathological results in screening and early diagnosis of breast cancer. Asian Biomed 8:11–19. https://doi.org/10.5372/1905-7415.0801.257

    Article  Google Scholar 

  5. Bunaciu AA, Vu Dang H, Aboul-Enein HY (2015) Applications of ft-ir spectrophotometry in cancer diagnostics. Crit Rev Anal Chem 45:156–165. https://doi.org/10.1080/10408347.2014.904733

    Article  CAS  PubMed  Google Scholar 

  6. Vatansever F, Hamblin MR (2012) Far infrared radiation (fir): its biological effects and medical applications. Photon Lasers Med 4:255–266. https://doi.org/10.1515/plm-2012-0034

    Article  Google Scholar 

  7. Carrick FR, Valerio LSA, Gonzalez-Vega MN, Engel D, Sugaya K (2021) Accelerated wound healing using a novel far-infrared ceramic blanket. Life-Basel 11:1–15. https://doi.org/10.3390/life11090878

    Article  CAS  Google Scholar 

  8. Inoue S, Takemoto M, Chishaki A, Ide T, Nishizaka M, Miyazono M et al (2012) Leg heating using far infra-red radiation in patients with chronic heart failure acutely improves the hemodynamics, vascular endothelial function, and oxidative stress. Intern Med 51:2263–2270. https://doi.org/10.2169/internalmedicine.51.7115

    Article  CAS  PubMed  Google Scholar 

  9. Sobajima M, Nozawa T, Shida T, Ohori T, Suzuki T, Matsuki A et al (2011) Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium. Am J Physiol-Heart Circ Physiol 301:H548–H554. https://doi.org/10.1152/ajpheart.00103.2011

    Article  CAS  PubMed  Google Scholar 

  10. Salm DC, Oliveira Belmonte LA, Emer AA, Leonel LdS, de Brito RN, da Rocha CC et al (2019) Aquatic exercise and far infrared (fir) modulates pain and blood cytokines in fibromyalgia patients: a double-blind, randomized, placebo-controlled pilot study. J Neuroimmunol 337:1–35. https://doi.org/10.1016/j.jneuroim.2019.577077

    Article  CAS  Google Scholar 

  11. Chang Y (2018) The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med 6:1–7. https://doi.org/10.1177/2050312118798941

    Article  CAS  Google Scholar 

  12. Sobajima M, Nozawa T, Ihori H, Shida T, Ohori T, Suzuki T et al (2013) Repeated sauna therapy improves myocardial perfusion in patients with chronically occluded coronary artery-related ischemia. Int J Cardiol 167:237–243. https://doi.org/10.1016/j.ijcard.2011.12.064

    Article  PubMed  Google Scholar 

  13. Yamane H, Araki R, Doi A, Sato F, Tanaka K, Miyazaki N et al (2021) Successful wound healing of refractory digital ulcer in patient with systemic sclerosis by waon therapy. J Cardiol Cases 24:190–192. https://doi.org/10.1016/j.jccase.2021.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chiu H-W, Chen C-H, Chang J-N, Chen C-H, Hsu Y-H (2016) Far-infrared promotes burn wound healing by suppressing nlrp3 inflammasome caused by enhanced autophagy. J Mol Med Jmm 94:809–819. https://doi.org/10.1007/s00109-016-1389-0

    Article  CAS  Google Scholar 

  15. Chen X, Zhang H, Zeng W, Wang N, Lo HH, Ip CK et al (2022) Far infrared irradiation suppresses experimental arthritis in rats by down-regulation of genes involved inflammatory response and autoimmunity. J Adv Res 38:107–118. https://doi.org/10.1016/j.jare.2021.08.015

    Article  CAS  PubMed  Google Scholar 

  16. Mu Y, ** Z, Yan Y, Tao J (2021) The possibility of using far infrared fabrics to promote wound healing from the cellular level. Fibers Polym 22:2206–2214. https://doi.org/10.1007/s12221-021-0182-z

    Article  CAS  Google Scholar 

  17. Hsu Y-H, Lin Y-F, Chen C-H, Chiu Y-J, Chiu H-W (2017) Far infrared promotes wound healing through activation of notch1 signaling. J Mol Med Jmm 95:1203–1213. https://doi.org/10.1007/s00109-017-1580-y

    Article  CAS  Google Scholar 

  18. Chen RF, Liu KF, Lee SS, Huang SH, Wu YC, Lin YN et al (2021) Far-infrared therapy accelerates diabetic wound healing via recruitment of tissue angiogenesis in a full-thickness wound healing model in rats. Biomedicines 9:1–11. https://doi.org/10.3390/biomedicines9121922

    Article  CAS  Google Scholar 

  19. Akasaki Y, Miyata M, Eto H, Shirasawa T, Hamada N, Ikeda Y et al (2006) Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ J 70:463–470. https://doi.org/10.1253/circj.70.463

    Article  CAS  PubMed  Google Scholar 

  20. Chen CH, Chen MC, Hsu YH, Chou TC (2022) Far-infrared radiation alleviates cisplatin-induced vascular damage and impaired circulation via activation of hif-1alpha. Cancer Sci 113:2194–2206. https://doi.org/10.1111/cas.15371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim S, Lee I, Song H-J, Choi S-j, Nagar H, Kim S-m et al (2019) Far-infrared-emitting sericite board upregulates endothelial nitric oxide synthase activity through increasing biosynthesis of tetrahydrobiopterin in endothelial cells. Evid-Based Complement Altern Med 2019:1–9. https://doi.org/10.1155/2019/1813282

    Article  CAS  Google Scholar 

  22. Park J-H, Lee S, Cho D-H, Park YM, Kang D-H, Jo I (2013) Far-infrared radiation acutely increases nitric oxide production by increasing ca2+ mobilization and ca2+/calmodulin-dependent protein kinase ii-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem Biophys Res Commun 436:601–606. https://doi.org/10.1016/j.bbrc.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  23. Chen C-H, Chen T-H, Wu M-Y, Chou T-C, Chen J-R, Wei M-J et al (2017) Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via plzf- mediated autophagy in diabetic mice. Sci Rep 7:1–14. https://doi.org/10.1038/srep40442

    Article  CAS  Google Scholar 

  24. Lin CC, Yang WC, Chen MC, Liu WS, Yang CY, Lee PC (2013) Effect of far infrared therapy on arteriovenous fistula maturation: an open-label randomized controlled trial. Am J Kidney Dis 62:304–311. https://doi.org/10.1053/j.ajkd.2013.01.015

    Article  PubMed  Google Scholar 

  25. Chen C-F, Lee C-Y, Chen F-A, Yang C-Y, Chen T-H, Ou S-M et al (2022) Far-infrared therapy improves arteriovenous fistula patency and decreases plasma asymmetric dimethylarginine in patients with advanced diabetic kidney disease: a prospective randomized controlled trial. J Clin Med 11:1–13. https://doi.org/10.3390/jcm11144168

    Article  CAS  Google Scholar 

  26. Lindhard K, Rix M, Heaf JG, Hansen HP, Pedersen BL, Jensen BL et al (2021) Effect of far infrared therapy on arteriovenous fistula maturation, survival and stenosis in hemodialysis patients, a randomized, controlled clinical trial: the faith on fistula trial. BMC Nephrol 22:1–9. https://doi.org/10.1186/s12882-021-02476-x

    Article  Google Scholar 

  27. Hadimeri U, Warme A, Stegmayr B (2017) A single treatment, using far infrared light improves blood flow conditions in arteriovenous fistula. Clin Hemorheol Microcirc 66:211–217. https://doi.org/10.3233/ch-170254

    Article  PubMed  Google Scholar 

  28. Chen C-F, Yang W-C, Lin C-C (2016) An update of the effect of far infrared therapy on arteriovenous access in end-stage renal disease patients. J Vasc Access 17:293–298. https://doi.org/10.5301/jva.5000561

    Article  PubMed  Google Scholar 

  29. Cheng Y-C, Lung C-W, Jan Y-K, Kuo F-C, Lin Y-S, Lo Y-C et al (2020) Evaluating the far-infrared radiation bioeffects on micro vascular dysfunction, nervous system, and plantar pressure in diabetes mellitus. Int J Lower Extrem Wounds 19:125–131. https://doi.org/10.1177/1534734619880741

    Article  CAS  Google Scholar 

  30. Hsu YH, Chen YC, Chen YW, Chiu TH, Kuo YT, Chen CH (2020) Far-infrared radiation prevents decline in β-cell mass and function in diabetic mice via the mitochondria-mediated sirtuin1 pathway. Metabolism 104:1–24. https://doi.org/10.1016/j.metabol.2020.154143

    Article  CAS  Google Scholar 

  31. Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG et al (2019) Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 122:144–148. https://doi.org/10.1016/j.neuint.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  32. Sharma N, Shin E-J, Kim NH, Cho E-H, Bao Trong N, Jeong JH et al (2019) Far-infrared ray-mediated antioxidant potentials are important for attenuating psychotoxic disorders. Curr Neuropharmacol 17:990–1002. https://doi.org/10.2174/1570159x17666190228114318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li K, Zhang Z, Liu NF, Sadigh P, Evans VJ, Zhou HH et al (2018) Far-infrared radiation thermotherapy improves tissue fibrosis in chronic extremity lymphedema. Lymphat Res Biol 16:248–257. https://doi.org/10.1089/lrb.2016.0057

    Article  CAS  PubMed  Google Scholar 

  34. **a L, Cui C, Nicoli F, Al-Mousawi A, Campisi CC, Lazzeri D et al (2022) Far infrared radiation therapy for gynecological cancer-related lymphedema is an effective and oncologically safe treatment: a randomized-controlled trial. Lymphat Res Biol 20:164–174. https://doi.org/10.1089/lrb.2019.0061

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez-Hernandez J-L, Recinella AN, Kandlikar SG, Dabydeen D, Medeiros L, Phatak P (2019) Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int J Heat Mass Transf 131:558–573. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.089

    Article  Google Scholar 

  36. Guirro RRD, Vaz M, das Neves LMS, Dibai AV, Carrara HHA, Guirro ECD (2017) Accuracy and reliability of infrared thermography in assessment of the breasts of women affected by cancer. J Med Syst 41:1–6. https://doi.org/10.1007/s10916-017-0730-7

    Article  Google Scholar 

  37. Morales-Cervantes A, Kolosovas-Machuca ES, Guevara E, Reducindo MM, Hernandez ABB, Garcia MR et al (2018) An automated method for the evaluation of breast cancer using infrared thermography. Excli J 17:989–998. https://doi.org/10.17179/excli2018-1735

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khan AA, Arora AS (2021) Thermography as an economical alternative modality to mammography for early detection of breast cancer. J Healthc Eng 2021:1–8. https://doi.org/10.1155/2021/5543101

    Article  Google Scholar 

  39. Singh D, Singh AK (2020) Role of image thermography in early breast cancer detection- past, present and future. Comput Methods Programs Biomed 183:1–9. https://doi.org/10.1016/j.cmpb.2019.105074

    Article  Google Scholar 

  40. Lin PH, Echeverria A, Poi MJ (2017) Infrared thermography in the diagnosis and management of vasculitis. J Vasc Surg Cases Innov Tech 3:112–114. https://doi.org/10.1016/j.jvscit.2016.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kwok G, Yip J, Yick K-L, Cheung M-C, Tse C-Y, Ng S-P et al (2017) Postural screening for adolescent idiopathic scoliosis with infrared thermography. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-14556-w

    Article  CAS  Google Scholar 

  42. Osama O, Abdelaziz M, Diaa A, Aly O, Medhat I (2015) Computational notes on the effect of solvation on the electronic properties of glycine. Der Pharma Chemica 7:337–380

    Google Scholar 

  43. Atta D, Mahmoud AE, Fakhry A (2019) Protein structure from the essential amino acids to the 3d structure. Biointerface Res Appl Chem 9:3817–3824. https://doi.org/10.33263/briac91.817824

    Article  CAS  Google Scholar 

  44. Goormaghtigh E, Ruysschaert J-M, Raussens V (2006) Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 90:46–57. https://doi.org/10.1529/biophysj.105.072017

    Article  CAS  Google Scholar 

  45. Diaa A, Ahmed F, Medhat I (2015) Chitosan membrane as an oil carrier: spectroscopic and modeling analyses. Der Pharma Chemica 7:357–361

  46. Neto V, Esteves-Ferreira S, Inacio I, Alves M, Dantas R, Almeida I et al (2022) Metabolic profile characterization of different thyroid nodules using ftir spectroscopy: a review. Metabolites 12:1–15. https://doi.org/10.3390/metabo12010053

    Article  CAS  Google Scholar 

  47. Li L, Wu J, Yang L, Wang H, Xu Y, Shen K (2021) Fourier transform infrared spectroscopy: an innovative method for the diagnosis of ovarian cancer. Cancer Manag Res 13:2389–2399. https://doi.org/10.2147/cmar.S291906

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kumar S, Srinivasan A, Nikolajeff F (2018) Role of infrared spectroscopy and imaging in cancer diagnosis. Curr Med Chem 25:1055–1072. https://doi.org/10.2174/0929867324666170523121314

    Article  CAS  PubMed  Google Scholar 

  49. Sheng D, Xu F, Yu Q, Fang T, **a J, Li S et al (2015) A study of structural differences between liver cancer cells and normal liver cells using ftir spectroscopy. J Mol Struct 1099:18–23. https://doi.org/10.1016/j.molstruc.2015.05.054

    Article  CAS  Google Scholar 

  50. Thumanu K, Sangrajrang S, Khuhaprema T, Kalalak A, Tanthanuch W, Pongpiachan S et al (2014) Diagnosis of liver cancer from blood sera using ftir microspectroscopy: a preliminary study. J Biophotonics 7:222–231. https://doi.org/10.1002/jbio.201300183

    Article  CAS  PubMed  Google Scholar 

  51. Yang X, Ou QH, Yang WY, Shi YM, Liu G (2021) Diagnosis of liver cancer by ftir spectra of serum. Spectrochim Acta Part A-Mol Biomol Spectrosc 263:1–7. https://doi.org/10.1016/j.saa.2021.120181

    Article  CAS  Google Scholar 

  52. **e Y-b, Liu Q, He F, Guo C-g, C-f W, Zhao P (2011) Diagnosis of colon cancer with fourier transform infrared spectroscopy on the malignant colon tissue samples. Chin Med J 124:2517–2521. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.16.022

    Article  CAS  PubMed  Google Scholar 

  53. Argov S, Ramesh J, Salman A, Sinelnikov I, Goldstein J, Guterman H et al (2002) Diagnostic potential of fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J Biomed Opt 7:248–254. https://doi.org/10.1117/1.1463051

    Article  PubMed  Google Scholar 

  54. Depciuch J, Kaznowska E, Zawlik I, Wojnarowska R, Cholewa M, Heraud P et al (2016) Application of raman spectroscopy and infrared spectroscopy in the identification of breast cancer. Appl Spectrosc 70:251–263. https://doi.org/10.1177/0003702815620127

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23H180002, Zhejiang Provincial “Revealing the list and taking command” Project of China under Grant No. KYH06Y22349, and National Natural Science Foundation of China under Grant No. 82302350.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and Z.L. conceived the idea, J.W. drafted the manuscript, J.P. and J.M. supervised the process, and X.G. and Z.X. contributed to editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to **aolin Wang or Zhong Lv.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Pan, J., Ma, J. et al. Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection. Lasers Med Sci 39, 41 (2024). https://doi.org/10.1007/s10103-024-03994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-03994-4

Keywords

Navigation