Log in

Photobiomodulation induces microvesicle release in human keratinocytes: PI3 kinase-dependent pathway role

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Microvesicles (MVs, 100–1000 nm diameter) are released into the extracellular environment by mammalian cells. MVs interact with near or remote cells through different mechanisms; in particular, MVs from human keratinocytes accelerate wound healing. Photobiomodulation by laser improves wound healing, but no information is available about its effects on MV release from human keratinocyte. Human-immortalized keratinocytes (human adult low-calcium high-temperature, HaCaT) were starved for 24 h and then irradiated using a 980-nm energy density of 0, 16.2, 32.5, and 48.7 J/cm2. After 24 h, MVs released in the conditioned medium were isolated, stained, and quantified using flow cytometry. MVs were distinguished from exosomes on the basis of their volume (forward scatter signals). In some experiments, phosphatidylinositol 3-kinase (PI-3K) activity, involved in MV release and stimulated by laser light, was inhibited by pre-treating cells with Wortmannin (WRT, 10 μg/mL). MVs were observed in HaCaT-conditioned medium both in basal- and laser-stimulated conditions. Photobiomodulation therapy, also known as PBMT, was able to increase MV release from human keratinocytes reaching a maximum effect at 32.5 J/cm2 with a stimulation of (148.6 ±15.1)% of basal (p<0.001). PI-3K activity inhibition strongly reduced both basal- and laser-induced MV release; but PBMT by laser still increased MV release, compared to basal values in the presence of WRT. In vitro near infrared photobiomodulation increased the releasing of MVs from human keratinocytes, while Wortmannin, a PI-3K inhibitor, negatively affects both basal- and laser-induced releasing. Laser-induced MV release could be a new effect of biostimulation on the wound healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  Google Scholar 

  2. Than UTT, Guanzon D, Leavesley D, Parker T (2017) Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 18(5)

  3. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  4. Hugel B, Martínez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    CAS  Google Scholar 

  5. Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ (2018) Wound healing. J Chin Med Assoc 81(2):94–101

    Article  PubMed  Google Scholar 

  6. Laberge A, Arif S, Moulin VJ (2018) Microvesicles: intercellular messengers in cutaneous wound healing. J Cell Physiol 233(8):5550–5563

    Article  CAS  PubMed  Google Scholar 

  7. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng CF, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B et al (2008) Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol 28(10):3344–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang P, Bi J, Owen GR, Chen W, Rokka A, Koivisto L et al (2015) Keratinocyte microvesicles regulate the expression of multiple genes in dermal fibroblasts. J Invest Dermatol 135(12):3051–3059

    Article  CAS  PubMed  Google Scholar 

  10. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31(3):334–340

    Article  CAS  PubMed  Google Scholar 

  11. Mosca RC, Ong AA, Albasha O, Bass K, Arany P (2019) Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach. Adv Skin Wound Care 32(4):157–167

    Article  PubMed  Google Scholar 

  12. Migliario M, Sabbatini M, Mortellaro C, Renò F (2018) Near infrared low-level laser therapy and cell proliferation: the emerging role of redox sensitive signal transduction pathways. J Biophotonics 11(11):e201800025

    Article  PubMed  Google Scholar 

  13. Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR et al (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8(10):795–803

    Article  CAS  PubMed  Google Scholar 

  14. Ayuk SM, Abrahamse H, Houreld NN (2016) The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res 2016:2897656

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amaroli A, Ravera S, Baldini F, Benedicenti S, Panfoli I, Vergani L (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34(3):495–504

    Article  PubMed  Google Scholar 

  16. Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9(11-12):1148–1156

    Article  CAS  PubMed  Google Scholar 

  17. Rizzi M, Migliario M, Tonello S, Rocchetti V, Renò F (2018) Photobiomodulation induces in vitro re-epithelialization via nitric oxide production. Lasers Med Sci 33(5):1003–1008

    Article  PubMed  Google Scholar 

  18. Mignon C, Uzunbajakava NE, Castellano-Pellicena I, Botchkareva NV, Tobin DJ (2018) Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg Med 50(8):859–882

    Article  PubMed  Google Scholar 

  19. Migliario M, Tonello S, Rocchetti V, Rizzi M, Renò F (2018) Near infrared laser irradiation induces NETosis via oxidative stress and autophagy. Lasers Med Sci 33(9):1919–1924

    Article  PubMed  Google Scholar 

  20. Deng Z, Shia F, Zhoub Z, Suna F, Suna M, Sunb Q, Chena L, Lia D, Jianga C, Zhaoa R, Cui D, Wang X, **ga Y, **aa S, Hana B (2019) M1 macrophage mediated increased reactive oxygen species (ROS) influence wound healing via the MAPK signaling in vitro and in vivo. Toxicol Appl Pharmacol 366:83–95

    Article  CAS  PubMed  Google Scholar 

  21. Dai J, Zhang X, Wang Y, Chen H, Chai Y (2017) ROS-activated NLRP3 inflammasome initiates inflammation in delayed wound healing in diabetic rats. Int J Clin Exp Pathol 10(9):9902–9909

    PubMed  PubMed Central  Google Scholar 

  22. Ståhl AL, Johansson K, Mossberg M, Kahn R, Karpman D (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34(1):11–30

    Article  PubMed  Google Scholar 

  23. Wäster P, Eriksson I, Vainikka L, Rosdahl I, Öllinger K (2016) Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci Rep 6:27890

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jella KK, Rani S, O’Driscoll L, McClean B, Byrne HJ, Lyng FM (2014) Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 181(2):138–145

    Article  CAS  PubMed  Google Scholar 

  25. Than UTT, Leavesley DI, Parker TJ (2019) Characteristics and roles of extracellular vesicles released by epidermal keratinocytes. J Eur Acad Dermatol Venereol 33(12):2264–2272

    Article  CAS  PubMed  Google Scholar 

  26. Jere SW, Houreld NN, Abrahamse H (2019) Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev 50:52–59

    Article  CAS  PubMed  Google Scholar 

  27. Taylor J, Bebawy M (2019) Proteins regulating microvesicle biogenesis and multidrug resistance in cancer. Proteomics. 19(1-2):e1800165

    Article  PubMed  Google Scholar 

  28. Beer KB, Wehman AM (2017) Mechanisms and functions of extracellular vesicle release in vivo-what we can learn from flies and worms. Cell Adhes Migr 11(2):135–150

    Article  CAS  Google Scholar 

  29. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  CAS  PubMed  Google Scholar 

  30. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771

    Article  CAS  PubMed  Google Scholar 

  31. Aubertin K, Silva AK, Luciani N, Espinosa A, Djemat A, Charue D et al (2016) Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep 6:35376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lehrich BM, Liang Y, Khosravi P, Federoff HJ, Fiandaca MS (2018) Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Int J Mol Sci 19(11)

  33. Rizzi M, Migliario M, Rocchetti V, Tonello S, Renò F (2016) Near-infrared laser increases MDPC-23 odontoblast-like cells proliferation by activating redox sensitive pathways. J Photochem Photobiol B 164:283–288

    Article  CAS  PubMed  Google Scholar 

  34. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemova D et al (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4:25530

    Article  PubMed  Google Scholar 

  35. Nitsch A, Haralambiev L, Einenkel R, Muzzio DO, Zygmunt MT, Ekkernkamp A, et al (2019) Determination of in vitro membrane permeability by analysis of intracellular and extracellular Fluorescein signals in renal cells. In Vivo 33(6):1767–1771

  36. Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8(4):220–232

    Article  CAS  PubMed  Google Scholar 

  37. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  38. Moulin VJ, Mayrand D, Messier H, Martinez MC, Lopez-Vallé CA, Genest H (2010) Shedding of microparticles by myofibroblasts as mediator of cellular cross-talk during normal wound healing. J Cell Physiol 225(3):734–740

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q et al (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20(9):1487–1495

    Article  CAS  PubMed  Google Scholar 

  41. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52

    PubMed  PubMed Central  Google Scholar 

  42. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  43. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L (2009) In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 41(3):227–231

    Article  PubMed  Google Scholar 

  44. Silva JC, Lacava ZG, Kuckelhaus S, Silva LP, Neto LF, Sauro EE et al (2004) Evaluation of the use of low level laser and photosensitizer drugs in healing. Lasers Surg Med 34(5):451–457

    Article  PubMed  Google Scholar 

  45. Chandler WL (2016) Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom 90(4):326–336

    Article  CAS  PubMed  Google Scholar 

  46. Alkhatatbeh MJ, Enjeti AK, Baqar S, Ekinci EI, Liu D, Thorne RF et al (2018) Strategies for enumeration of circulating microvesicles on a conventional flow cytometer: counting beads and scatter parameters. J Circ Biomark 7:1849454418766966

    Article  PubMed  PubMed Central  Google Scholar 

  47. Choi M, Kim JE, Cho KH, Lee JH (2013) In vivo and in vitro analysis of low level light therapy: a useful therapeutic approach for sensitive skin. Lasers Med Sci 28(6):1573–1579

    Article  CAS  PubMed  Google Scholar 

  48. Abadie S, Bedos P, Rouquette J (2019) A human skin model to evaluate the protective effect of compounds against UVA damage. Int J Cosmet Sci 41:594–603

    Article  CAS  PubMed  Google Scholar 

  49. Khan AQ, Travers JB, Kemp MG (2018) Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen 59(5):438–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol 588(Pt 17):3179–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oggero S, Austin-Williams S, Norling LV (2019) The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front Pharmacol 10:1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, **ng D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219(3):553–562

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Xu Q, Shi M, Gan P, Huang Q, Wang A et al (2020) Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway. Microvasc Res 129:103959

    Article  CAS  PubMed  Google Scholar 

  54. Bhattacharya S, McElhanon KE, Gushchina LV, Weisleder N (2016) Role of phosphatidylinositol-4,5-bisphosphate 3-kinase signaling in vesicular trafficking. Life Sci 167:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3)

  56. Pasquet JM, Dachary-Prigent J, Nurden AT (1996) Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur J Biochem 239(3):647–654

    Article  CAS  PubMed  Google Scholar 

  57. Hartwig JH, Chambers KA, Stossel TP (1989) Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 108(2):467–479

    Article  CAS  PubMed  Google Scholar 

  58. Yang WZ, Chen JY, Yu JT, Zhou LW (2007) Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells. Photochem Photobiol 83(4):979–984

    Article  CAS  PubMed  Google Scholar 

  59. Macedo AB, Moraes LH, Mizobuti DS, Fogaça AR, Moraes FS, Hermes TA et al (2015) Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: effects on regeneration capacity, inflammation response and oxidative stress. PLoS One 10(6):e0128567

    Article  PubMed  PubMed Central  Google Scholar 

  60. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC et al (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4(1):3–14

    Article  CAS  PubMed  Google Scholar 

  61. Lubart R, Friedmann H, Levinshal T, Lavie R, Breitbart H (1992) Effect of light on calcium transport in bull sperm cells. J Photochem Photobiol B 15(4):337–341

    Article  CAS  PubMed  Google Scholar 

  62. Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T et al (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Laura Begani from Wound Healing Laboratory for her helpful technical assistance and Dr. Joseph A. Simonpietri for the linguistic review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Renò.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Flavia Lovisolo and Flavia Carton shared first authorship

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovisolo, F., Carton, F., Gino, S. et al. Photobiomodulation induces microvesicle release in human keratinocytes: PI3 kinase-dependent pathway role. Lasers Med Sci 37, 479–487 (2022). https://doi.org/10.1007/s10103-021-03285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03285-2

Keywords

Navigation