Log in

Effect of diode-pumped solid state laser on polymerization shrinkage and color change in composite resins

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

A diode-pumped solid state (DPSS) laser emitting at 473 nm was used to test its influence on the degree of polymerization of composite resins. Eight composite resins were chosen and light cured with three different light-curing systems [a quartz–tungsten–halogen (QTH) lamp-based unit, a light-emitting diode (LED) unit, and a DPSS laser]. Polymerization shrinkage and color change in specimens were measured. According to the statistical analysis, each light-curing system produced a significantly different value of maximum polymerization shrinkage. In most specimens, the DPSS laser induced the least polymerization shrinkage. After being immersed in distilled water for 10 days, specimens light-cured by the DPSS laser had undergone less color change than those cured by the other units. In conclusion, the DPSS laser induced better or similar polymerization in terms of polymerization shrinkage and color change in composite resins compared with those of the QTH lamp-based and LED units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavalcante LM, Peris AR, Ambrosano GM, Ritter AV, Pimenta LA (2007) Effect of photoactivation systems and resin composite on the microleakage of esthetic restorations. J Contemp Dent Pract 8:70–79

    PubMed  Google Scholar 

  2. Pradhan RD, Melikechi N, Eichmiller F (2002) The effect of irradiation wavelength bandwidth and spot size on the scra** depth and temperature rise in composite exposed to an argon laser or a conventional quartz-tungsten-halogen source. Dent Mater 18:221–226. doi:10.1016/S0109-5641(01)00037-9

    Article  PubMed  CAS  Google Scholar 

  3. Soares LE, Martin AA, Pinheiro AL, Pacheco MT (2004) Vickers hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp. J Biomed Opt 9:601–608. doi:10.1117/1.1688811

    Article  PubMed  CAS  Google Scholar 

  4. Asmussen E, Peutzfeldt A (2005) Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 113:96–98. doi:10.1111/j.1600-0722.2004.00181.x

    Article  PubMed  Google Scholar 

  5. Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I (2005) Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 72B:260–267. doi:10.1002/jbm.b.30143

    Article  CAS  Google Scholar 

  6. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G (2005) Influence of light intensity from different curing units upon composite temperature rise. J Oral Rehabil 32:362–367. doi:10.1111/j.1365-2842.2004.01418.x

    Article  PubMed  CAS  Google Scholar 

  7. Oberholzer TG, Du Preez IC, Kidd M (2005) Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin based composite restoration. Biomaterials 26:3981–3986. doi:10.1016/j.biomaterials.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  8. Telford W, Murga M, Hawley T, Hawley R, Packard B, Komoriya A, Haas F, Hubert C (2005) DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Cytometry A 68A:36–44. doi:10.1002/cyto.a.20182

    Article  CAS  Google Scholar 

  9. Kwon YH, Jang CM, Shin DH, Seol HJ, Kim HI (2008) The applicability of DPSS laser for light curing of composite resins. Lasers Med Sci 23:407–414. doi:10.1007/s10103-007-0496-0

    Article  PubMed  Google Scholar 

  10. Knezevic A, Ristic M, Demoli N, Tarle Z, Music S, Negovetic Mandic V (2007) Composite photopolymerization with diode laser. Oper Dent 32:279–284. doi:10.2341/06-79

    Article  PubMed  Google Scholar 

  11. Watts DC (2005) Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 21:27–35. doi:10.1016/j.dental.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  12. Asmussen E, Peutzfeldt A (1999) Direction of shrinkage of light-curing resin composites. Acta Odontol Scand. 57:310–315 doi:10.1080/000163599428535

    Article  PubMed  CAS  Google Scholar 

  13. Oberholzer TG, Pameijer CH, Grobler SR, Rossouw RJ (2003) The effect of different power densities and method of exposure on the marginal adaptation of four light-cured dental restorative materials. Biomaterials 24:3593–3598. doi:10.1016/S0142-9612(03)00211-4

    Article  PubMed  CAS  Google Scholar 

  14. Barros GK, Aguiar FH, Santos AJ, Lovadino JR (2003) Effect of different intensity light curing modes on microleakage of two resin composite restorations. Oper Dent 28:642–646

    PubMed  Google Scholar 

  15. Rahiotis C, Affodite CR, Loukidis M, Vougiouklakis G (2004) Curing efficiency of various types of light-curing units. Eur J Oral Sci 112:89–94. doi:10.1111/j.0909-8836.2004.00092.x

    Article  PubMed  Google Scholar 

  16. Kemp-Scholte CM, Davidson CL (1988) Marginal sealing of curing contraction gaps in class V composite resin restorations. J Dent Res 67:841–845

    PubMed  CAS  Google Scholar 

  17. Lai JH, Johnson AE (1993) Measuring polymerization shrinkage of photo-activated restorative materials by a water-filled dilatometer. Dent Mater 9:139–143. doi:10.1016/0109-5641(93)90091-4

    Article  PubMed  CAS  Google Scholar 

  18. Davidson CL, Feilzer AJ (1997) Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25:435–440. doi:10.1016/S0300-5712(96)00063-2

    Article  PubMed  CAS  Google Scholar 

  19. Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M (1988) Analysis of photo-initiators in visible-light-cured dental composite resins. J Dent Res 67:24–28

    PubMed  CAS  Google Scholar 

  20. Shortall AC (2005) How light source and product shade influence cure depth for a contemporary composite. J Oral Rehabil 32:906–911. doi:10.1111/j.1365-2842.2005.01523.x

    Article  PubMed  CAS  Google Scholar 

  21. Sidhu SK, Ikeda T, Omata Y, Fujita M, Sano H (2006) Change of color and translucency by light curing in resin composites. Oper Dent 31:598–603. doi:10.2341/05-109

    Article  PubMed  Google Scholar 

  22. Ferracane JL, Moser JB, Greener EH (1985) Ultraviolet light-induced yellowing of dental restorative resins. J Prosthet Dent 54:483–487. doi:10.1016/0022-3913(85)90418-4

    Article  PubMed  CAS  Google Scholar 

  23. Hirabayashi S (1987) The influence of monomer composition and filler on light permeability and polymerization of visible light-cured composite resin. J J Dent Mater 6:481–495

    Google Scholar 

Download references

Acknowledgments

This study was supported by a Medical Research Institute Grant 2006-05, Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hoon Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, YH., Cho, BH., Nah, KS. et al. Effect of diode-pumped solid state laser on polymerization shrinkage and color change in composite resins. Lasers Med Sci 25, 339–343 (2010). https://doi.org/10.1007/s10103-009-0644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0644-9

Keywords

Navigation