Log in

The applicability of DPSS laser for light curing of composite resins

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The applicability of diode-pumped solid state (DPSS) laser for light curing the composite resins was tested with a quartz–tungsten–halogen lamp-based unit and a light emitting diode unit. The emission spectra of the light-curing systems used match with the absorption spectrum of camphorquinone. Among the light-curing systems, DPSS laser showed the narrowest emission bandwidth. The light intensity of DPSS laser was approximately 64% of the other two light-curing units. In most specimens, DPSS laser showed the least attenuation of the number of incident photons. On the top surface, specimens cured with DPSS laser showed similar microhardness values compared to the specimens cured with the other two light-curing units. During the light curing, DPSS laser induced the lowest temperature rise (25.5 ∼ 35.5°C) in the specimens compared to the other two light-curing units (34.2 ∼ 41.7°C). In conclusion, DPSS laser has high potential to be an alternative to the other light-curing units or a new light-curing unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hofmann N, Hugo B, Klaiber B (2002) Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness. Eur J Oral Sci 110:471–479

    Article  PubMed  CAS  Google Scholar 

  2. Pradhan RD, Melikechi N, Eichmiller F (2002) The effect of irradiation wavelength bandwidth and spot size on the scra** depth and temperature rise in composite exposed to an argon laser or a conventional quartz–tungsten–halogen source. Dent Mater 18:221–226

    Article  PubMed  CAS  Google Scholar 

  3. Soares LE, Martin AA, Pinheiro AL, Pacheco MT (2004) Vickers hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp. J Biomed Opt 9:601–608

    Article  PubMed  CAS  Google Scholar 

  4. Asmussen E, Peutzfeldt A (2005) Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 113:96–98

    Article  PubMed  Google Scholar 

  5. Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I (2005) Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 72B:260–267

    Article  CAS  Google Scholar 

  6. Oberholzer TG, Du Preez IC, Kidd M (2005) Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin based composite restoration. Biomaterials 26:3981–3986

    Article  PubMed  CAS  Google Scholar 

  7. Kelsey WP, Blankenau RJ, Powell GL, Barkmeier WW, Stormberg EF (1992) Power and time requirements for use of the argon laser to polymerize composite resins. J Clin Laser Med Surg 10:273–278

    PubMed  CAS  Google Scholar 

  8. Telford W, Murga M, Hawley T, Hawley R, Packard B, Komoriya A, Haas F, Hubert C (2005) DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Cytometry 68A:36–44

    Article  CAS  Google Scholar 

  9. Vargas M, Cobb DS, Schmit JL (1998) Polymerization of composite resins: argon laser vs conventional light. Oper Dent 23:87–93

    PubMed  CAS  Google Scholar 

  10. Rueggeberg FA, Ergle JW, Mettenburg DJ (2000) Polymerization depths of contemporary light-curing units using microhardness. J Esthet Dent 12:340–349

    Article  PubMed  CAS  Google Scholar 

  11. Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN (2001) The effect of cure rate on the mechanical properties on dental resins. Dent Mater 17:504–511

    Article  PubMed  CAS  Google Scholar 

  12. Zach L, Cohen G (1965) Pulpal response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  CAS  Google Scholar 

  13. Hussey DL, Biagioni PA, Lamey PJ (1995) Thermographic measurement of temperature change during resin composite polymerization in vitro. J Dent 23:267–271

    Article  PubMed  CAS  Google Scholar 

  14. Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M (1988) Analysis of photo-initiators in visible-light-cured dental composite resins. J Dent Res 67:24–28

    PubMed  CAS  Google Scholar 

  15. Hinoura K, Akiyama Y, Miyazaki M, Kuroda T, Onose H (1995) Influence of irradiation sequence on dentin bond of resin inlays. Oper Dent 20:30–33

    PubMed  CAS  Google Scholar 

  16. Bouschlicher MR, Rueggeberg FA, Boyer DB (2000) Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent 12:23–32

    Article  PubMed  CAS  Google Scholar 

  17. Boyer DB, Chalkley Y, Chan KC (1982) Correlation between strength of bonding to enamel and mechanical properties of dental composites. J Biomed Mater Res 16:775–783

    Article  PubMed  CAS  Google Scholar 

  18. Kwon YH, Kwon TY, Ong JL, Kim KH (2002) Light-polymerized compomers: coefficient of thermal expansion and microhardness. J Prosthet Dent 88:396–401

    Article  PubMed  CAS  Google Scholar 

  19. Raab WH (1992) Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc 81:469–479

    Google Scholar 

  20. Noda M, Wataha JC, Kaga M, Lockwood PE, Volkmann KR, Sano H (2002) Components of dentinal adhesives modulated heat shock protein 72 expression in heat-stressed THP-1 human monocytes as sublethal concentrations. J Dent Res 81:265–269

    PubMed  CAS  Google Scholar 

  21. Wataha JC, Lewis JB, Lockwood PE, Hsu S, Messer RL, Rueggeberg FA, Bouillaguet S (2004) Blue light differentially modulates cell survival and growth. J Dent Res 83:104–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Medical Research Institute Grant (2005-45), Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hoon Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y.H., Jang, CM., Shin, DH. et al. The applicability of DPSS laser for light curing of composite resins. Lasers Med Sci 23, 407–414 (2008). https://doi.org/10.1007/s10103-007-0496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0496-0

Keywords

Navigation