Log in

Review of microalgae growth in palm oil mill effluent for lipid production

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Wastewater treatment using microalgae is an eco-friendly process without secondary pollution. During the process, the wastewater produced is reused, which allows efficient nutrient recycling. This review provides constructive information to enable progress of competent technology for microalgae based productions in palm oil mill effluent (POME). The characteristics of POME that will be described in this paper would be a source of pollution in water if discharged directly. Since microalgae have great potential to be isolated and cultivated in POME, previous studies to improve POME based culture media are still limited. Microalgae are highly competent in diminishing CO2 emissions and reducing the organic components in POME. In conclusion, biological treatments by using microalgae discussed in this paper and the lipid production from microalgae biomass can be used as an alternative for energy production. The POME treatment with microalgae may meet the standards or limits before being discharged into the water body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275. doi:10.1016/j.sjbs.2012.04.005

    Article  CAS  Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157:87–95

    Article  CAS  Google Scholar 

  • Ahmad AD, Salihon J, Tao DG (2015) Evaluation of CO2 Sequestration by microalgae culture in palm oil mill effluent (POME) medium. In: Advanced materials research. Trans Tech Publ, pp 311–316

  • Alabi AO, Bibeau E, Tampier M, Council BCI (2009) Microalgae technologies & processes for biofuels–bioenergy production in British Columbia: current technology, suitability & barriers to implementation. The British Columbia Innovation Council, University of Manitoba, Manitoba

    Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Avagyan AB (2011) Water global recourse management through the use of microalgae addressed to sustainable development. Clean Technol Environ Policy 13:431–445

    Article  Google Scholar 

  • Azimatun NMM, Hadiyanto GD (2014) Evaluation of carbon, nitrogen and phosphorus ratio of palm oil mill effluent digested (POMED) wastewater as replacement synthetic medium for Spirulina sp. growth. Am-Eurasian J Agric & Environ Sci 14:536–540

    Google Scholar 

  • Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  Google Scholar 

  • Barbosa MJGV (2003) Microalgal photobioreactors: scale-up and optimisation. Wageningen University, Wageningen

    Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, Melbourne

    Google Scholar 

  • Becker E (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  Google Scholar 

  • Bello M, Nourouzi M, Abdullah LC, Choong TS, Koay Y, Keshani S (2013) POME is treated for removal of color from biologically treated POME in fixed bed column: applying wavelet neural network (WNN). J Hazard Mater 262:106–113

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101:6768–6777

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Cheng J, Huang R, Yu T, Li T, Zhou J, Cen K (2014) Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresour Technol 151:415–418

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh Y-K, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102:8639–8645

    Article  CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha F-J (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Article  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45:7554–7560

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Coppola F, Simoncini E, Pulselli R, Brebbia C, Tiezzi E (2009) Bioethanol potentials from marine residual biomass: an emergy evaluation. In: Brebbia C, Tiezzi E (eds) 7th international conference on ecosystems and sustainable development, 08–10 Jul 2009. WIT transactions on ecology and the environment. Ecosystems and sustainable development VII, Chianciano Terme, pp 379–387

  • Damayanti A, Ujang Z, Salim M, Olsson G, Sulaiman A (2010) Respirometric analysis of activated sludge models from palm oil mill effluent. Bioresour Technol 101:144–149

    Article  CAS  Google Scholar 

  • de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339

    Article  CAS  Google Scholar 

  • Ding GT, Yaakob Z, Takriff MS, Salihon J, Rahaman MSA (2016) Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp in palm oil mill effluent (POME) International Journal of Hydrogen Energy

  • Du Z, Mohr M, Ma X, Cheng Y, Lin X, Liu Y (2012) Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour Technol 120:13–18

    Article  CAS  Google Scholar 

  • Gobi K, Vadivelu V (2013) By-products of palm oil mill effluent treatment plant—a step towards sustainability. Renew Sustain Energy Rev 28:788–803

    Article  CAS  Google Scholar 

  • Gobi K, Mashitah M, Vadivelu V (2011) Development and utilization of aerobic granules for the palm oil mill (POM) wastewater treatment. Chem Eng J 174:213–220

    Article  CAS  Google Scholar 

  • González-Fernández C, Molinuevo-Salces B, García-González MC (2011) Nitrogen transformations under different conditions in open ponds by means of microalgae–bacteria consortium treating pig slurry. Bioresour Technol 102:960–966

    Article  CAS  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, New York

    Book  Google Scholar 

  • Graham L, Wilcox L (2000) Algae. Prentice Hall, Upper Saddler River

    Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae. Benjamin Cummings, University of California, San Francisco

    Google Scholar 

  • Guo Z, Liu Y, Guo H, Yan S, Mu J (2013) Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J Environ Sci 25:S85–S88

    Article  Google Scholar 

  • Hadiyanto M, Hartanto G (2012) Enhancement of biomass production from Spirulina sp. cultivated in POME medium. In: Proceedings of the international conference on chemical and material engineering, pp 1–6

  • Hadiyanto H, Nur MMA, Hartanto GD (2012) Cultivation of Chlorella sp. as biofuel sources in palm oil mill effluent (POME). Int J Renew Energy Dev (IJRED) 1:45–49

    CAS  Google Scholar 

  • Han F, Huang J, Li Y, Wang W, Wang J, Fan J, Shen G (2012) Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Bioresour Technol 118:431–437

    Article  CAS  Google Scholar 

  • Hernández D, Riaño B, Coca M, Solana M, Bertucco A, García-González M (2016) Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J 285:449–458

    Article  CAS  Google Scholar 

  • Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy 33:1386–1392

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Article  Google Scholar 

  • Ibrahim RI, Wong Z, Mohammad A (2015) Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgaze. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012006

  • Jena U, Das K (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25:5472–5482

    Article  CAS  Google Scholar 

  • Kaewpintong K (2004) Cultivation of Haematococcus pluvialis in airlift bioreactor. Chulalongkorn University, Chulalongkorn

  • Kamarudin KF, Tao DG, Yaakob Z, Takriff MS, Rahaman MSA, Salihon J (2015) A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae. Der Pharma Chemica 7:73–89

    CAS  Google Scholar 

  • Kamyab H, Md Din MF, Lee CT, Keyvanfar A, Shafaghat A, Majid MZA (2014) Lipid production by microalgae Chlorella pyrenoidosa cultivated in palm oil mill effluent (POME) using hybrid photo bioreactor (HPBR). Desalination and water treatment:1-13

  • Kamyab H, Din MFM, Keyvanfar A, Majid MZA, Talaiekhozani A, Shafaghat A (2015) Efficiency of microalgae chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75:2400–2408

    Article  CAS  Google Scholar 

  • Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 49:38–48

    Article  CAS  Google Scholar 

  • Kim J, Lingaraju BP, Rheaume R, Lee J-Y, Siddiqui KF (2010) Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Sci Technol 15:391–396

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29:124–141

    Article  CAS  Google Scholar 

  • Laurens LM, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. BioEnergy Res 4:22–35

    Article  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  Google Scholar 

  • Malaysian Palm Oil Board (2012) Malaysian oil palm statistics, 2011. Malaysian Palm Oil Board (MPOB), Malaysia

    Google Scholar 

  • Malaysian Palm Oil Board (2014) Malaysian oil palm statistics, 2013. Malaysian Palm Oil Board (MPOB), Malaysia

    Google Scholar 

  • Mansour MP, Frampton DM, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue–green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • MarouĹĄek J, Kawamitsu Y, Ueno M, Kondo Y, Kolar L (2012) Methods for improving methane yield from rye straw. Appl Eng Agric 28:747–755

    Article  Google Scholar 

  • Maroušek J, Hašková S, Maroušková A, Myšková K, Vaníčková R, Váchal J (2015a) Financial and biotechnological assessment of new oil extraction technology. Energy Sources 37:1723–1728

    Article  CAS  Google Scholar 

  • Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2015b) Processing of residues from biogas plants for energy purposes. Clean Technol Environ Policy 17:797–801

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  CAS  Google Scholar 

  • Moheimani NR (2005) The culture of coccolithophorid algae for carbon dioxide bioremediation. Murdoch University, Perth

    Google Scholar 

  • Munn M, Osborne L, Wiley M (1989) Factors influencing periphyton growth in agricultural streams of central Illinois. Hydrobiologia 174:89–97

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  Google Scholar 

  • Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic/autotrophic cultivation—an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol 9:359–366

    Article  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002) Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to α-tocopherol production. Biotechnol Lett 24:953–958

    Article  CAS  Google Scholar 

  • Olguí EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  Google Scholar 

  • Osundeko O, Pittman JK (2014) Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresour Technol 152:355–363

    Article  CAS  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2010) Phycoremediation of heavy metals in polluted water bodies. Electron J Environ Agric Food Chem 9:808–814

    CAS  Google Scholar 

  • Park S, Kim J, Yoon Y, Park Y, Lee T (2015) Blending water-and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014. Bioresour Technol 198:388–394

    Article  CAS  Google Scholar 

  • Parthasarathy S, Gomes RL, Manickam S (2016) Process intensification of anaerobically digested palm oil mill effluent (AAD-POME) treatment using combined chitosan coagulation, hydrogen peroxide (H2O2) and Fenton’s oxidation. Clean Technol Environ Policy 18:219–230

    Article  CAS  Google Scholar 

  • Perumal S, Thirunavukkarasu A, Pachiappan P (2015) Advances in marine and brackishwater aquaculture. Springer, India

    Book  Google Scholar 

  • Picardo MC, de Medeiros JL, Monteiro JGM, Chaloub RM, Giordano M, Araújo OdF (2013) A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Technol Environ Policy 15:275–291

    Article  Google Scholar 

  • Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V (2010) Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technol Environ Policy 12:239–254

    Article  CAS  Google Scholar 

  • Ponraj M, Din MFM (2013) Effect of light/dark cycle on biomass and lipid productivity by Chlorella pyrenoidosa using palm oil mill effluent (POME). J Sci Ind Res 72:703–706

    CAS  Google Scholar 

  • Pratoomyot J, Srivilas P, Noiraksar T (2005) Fatty acids composition of 10 microalgal species. Songklanakarin J Sci Technol 27:1179–1187

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Putri EV, Din MFM, Ahmed Z, Jamaluddin H, Chelliapan S (2011) Investigation of microalgae for high lipid content using palm oil mill effluent (Pome) as carbon source. In: International conference on environment and industrial innovation, IPCBEE

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  Google Scholar 

  • Rajkumar R, Yaakob Z, Takriff MS (2013) Potential of micro and macro algae for biofuel production: a brief review. Bioresources 9:1606–1633

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Ren H-Y, Liu B-F, Kong F, Zhao L, Ren N (2015) Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. Water Res 85:404–412

    Article  CAS  Google Scholar 

  • Richmond A (2008) Handbook of microalgal culture: biotechnology and applied phycology. John Wiley & Sons, Cornwall

  • Rizkytata BT, Gumelar MT, Abdullah TH (2014) Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia 47:56–61

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  • Shu** Z, Yulong W, Mingde Y, Chun L, Junmao T (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol 101:359–365

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  Google Scholar 

  • Singh GKS, Kuppan P, Goto M, Sugiura N, Noor MJMM, Ujang Z (2013) Physical water quality and algal density for remediation of algal blooms in tropical shallow eutrophic reservoir. J Novel Carbon Resour Sci 7:33–41

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Sukumaran P, Nulit R, Zulkifly S, Halimoon N, Omar H, Ismail A (2014) Potential of fresh POME as a growth medium in mass production of Arthrospira platensis. Int J Curr Microbiol App Sci 3:235–250

    Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  CAS  Google Scholar 

  • Tong S, Jaafar AB (2004) Waste to energy: methane recovery from anaerobic digestion of palm oil mill effluent. Energy Smart 4:1–8

    Google Scholar 

  • Vairappan CS, Yen AM (2008) Palm oil mill effluent (POME) cultured marine microalgae as supplementary diet for rotifer culture. J Appl Phycol 20:603–608

    Article  CAS  Google Scholar 

  • Wagner J et al (2016) Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresour Technol 207:166–174

    Article  CAS  Google Scholar 

  • Wang R, Peng B, Huang K (2015) The research progress of CO2 sequestration by algal bio-fertilizer in China. J CO2 Util 11:67–70. doi:10.1016/j.jcou.2015.01.007

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel R (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels: a subcontract report. Solar Energy Res Inst, Golden

    Book  Google Scholar 

  • Wong YS, Kadir MOA, Teng TT (2009) Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour Technol 100:4969–4975

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWW, Withag JA, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122

    Article  CAS  Google Scholar 

  • Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366:187–196

    Article  CAS  Google Scholar 

  • Yacob S, Shirai Y, Ali Hassan M (2009) Treatment of palm oil wastewaters. Waste treatment in the food processing industry. CRC Press, Boca Raton

    Google Scholar 

  • Yadavalli R, Rao C, Rao RS, Potumarthi R (2014) Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. Asia-Pac J Chem Eng 9:368–373

    Article  CAS  Google Scholar 

  • Yang J, Cao J, **ng G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, **angli Q, Lina C, **angjun N, Zhijian M, Zhang Z (2008) Integration of biological method and membrane technology in treating palm oil mill effluent. J Environ Sci 20:558–564

    Article  CAS  Google Scholar 

  • Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol 48:1000–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding provided for this work by Universiti Teknologi Malaysia (UTM) under research Grant R.J130000.7809.4F618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng Shiun Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resdi, R., Lim, J.S., Kamyab, H. et al. Review of microalgae growth in palm oil mill effluent for lipid production. Clean Techn Environ Policy 18, 2347–2361 (2016). https://doi.org/10.1007/s10098-016-1204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1204-1

Keywords

Navigation