Log in

Eye movement abnormalities in neurodegenerative langerhans cell histiocytosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Langerhans cell histiocytosis (LCH) is a rare inflammatory myeloid neoplasm characterized by proliferation of tumor histiocytes that involves multiple organs including central nervous system. The physiopathologic process underlying degenerative neuro-LCH (i.e., DN-LCH) remains imperfectly settled. Since the main clinical features of DN-LCH are cerebellar ataxia and dysexecutive syndrome, eye movements might be disrupted and may help in disease diagnosis and monitoring. We retrospectively analyzed the medical records of twenty DN-LCH patients investigated using eye movement recording (EMR) in our hospital between 2015 and 2018. DN-LCH patients exhibited (i) abnormal gain in visually guided saccades including hypermetric saccades and excessive gain variability -45.0%-, (ii) increased mean antisaccade error rates -66.7%-, (iii) altered smooth pursuit -50.0%-, and (iv) excessive number of square wave jerks-25%- and gaze-evoked nystagmus. Our study suggests that DN-LCH patients present a peculiar pattern of eye movement impairments supporting cerebellar and prefrontal dysfunctions. As a non-invasive method, EMR could therefore be a useful tool for quantitative monitoring of DN-LCH patients. Further studies are warranted to support our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu RC, Chu C, Buluwela L, Chu AC (1994) Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet (London, England) 343(8900):767–768

    Article  CAS  Google Scholar 

  2. Néel A, Artifoni M, Donadieu J, Lorillon G, Hamidou M, Tazi A (2015) Histiocytose langerhansienne de l’adulte. La Rev Médecine Interne 36(10):658–667

    Article  Google Scholar 

  3. Howarth DM, Gilchrist GS, Mullan BP, Wiseman GA, Edmonson JH, Schomberg PJ (1999) Langerhans cell histiocytosis: diagnosis, natural history, management, and outcome. Cancer 85(10):2278–2290

    Article  CAS  PubMed  Google Scholar 

  4. Héritier S, Barkaoui M-A, Miron J et al (2018) Incidence and risk factors for clinical neurodegenerative Langerhans cell histiocytosis: a longitudinal cohort study. Br J Haematol 183(4):608–617

    Article  PubMed  Google Scholar 

  5. Le Guennec L, Martin-Duverneuil N, Mokhtari K et al (2017) Neurohistiocytose langerhansienne. Presse Med 46(1):79–84

    Article  PubMed  Google Scholar 

  6. Le Guennec L, Decaix C, Donadieu J et al (2014) The cognitive spectrum in neurodegenerative Langerhans cell histiocytosis. J Neurol 261(8):1537–1543

    Article  PubMed  Google Scholar 

  7. Martin-Duverneuil N, Idbaih A, Hoang-Xuan K et al (2006) MRI features of neurodegenerative Langerhans cell histiocytosis. Eur Radiol 16(9):2074–2082

    Article  CAS  PubMed  Google Scholar 

  8. Kennard C (2011) Disorders of higher gaze control, 1st edn. Elsevier B.V, vol 102

  9. Moscovich M, Okun MS, Favilla C et al (2015) Clinical evaluation of eye movements in spinocerebellar ataxias. J Neuro-Ophthalmol 35(1):16–21

    Article  CAS  Google Scholar 

  10. Attoni T, Beato R, Pinto S, Cardoso F (2016) Abnormal eye movements in three types of chorea. Arq Neuropsiquiatr 74(9):761–766

    Article  PubMed  Google Scholar 

  11. Jung I, Kim J-S (2019) Abnormal eye movements in parkinsonism and movement disorders. J Mov Disord 12(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  12. McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68(3):255–270

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baird-Gunning JJD, Lueck CJ (2017) Central control of eye movements. Curr Opin Neurol 31(1):1

    Google Scholar 

  14. Terao Y, Fukuda H, Hikosaka O (2017) What do eye movements tell us about patients with neurological disorders? - An introduction to saccade recording in the clinical setting. Proc Jpn Acad Ser B Phys Biol Sci 93(10):772–801

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ptak R, Müri RM (2013) The parietal cortex and saccade planning: lessons from human lesion studies. Front Hum Neurosci 7:254

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gaymard B, Lynch J, Ploner CJ, Condy C, Rivaud-Péchoux S (2003) The parieto-collicular pathway: anatomical location and contribution to saccade generation. Eur J Neurosci 17(7):1518–1526

    Article  CAS  PubMed  Google Scholar 

  17. Pierrot-Deseilligny C, Müri RM, Nyffeler T, Milea D (2005) The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Ann N Y Acad Sci 1039(1):239–251

    Article  PubMed  Google Scholar 

  18. Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Front Neurol. SEP(September):1–15

    Google Scholar 

  19. Vintonyak O, Gorges M, Müller H-P et al (2017) Patterns of eye movement impairment correlate with regional brain atrophy in neurodegenerative parkinsonism. Neurodegener Dis 17(4–5):117–126

    Article  PubMed  Google Scholar 

  20. Daye PM, Optican LM, Roze E, Gaymard B, Pouget P (2013) Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology. J Transl Med 11(1):125

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Opstal AJ, Kasap B (2019) Maps and sensorimotor transformations for eye-head gaze shifts: role of the midbrain superior colliculus. In: Progress in Brain Research. vol. 249, 19–33

  22. Gaymard B (2012) Cortical and sub-cortical control of saccades and clinical application. Rev Neurol (Paris) 168(10):734–740. https://doi.org/10.1016/j.neurol.2012.07.016

    Article  CAS  Google Scholar 

  23. Goffart L, Chen LL, Sparks DL (2003) Saccade dysmetria during functional perturbation of the caudal fastigial nucleus in the monkey. Ann N Y Acad Sci 1004:220–8

    Article  PubMed  Google Scholar 

  24. Kunimatsu J, Suzuki TW, Tanaka M (2016) Implications of lateral cerebellum in proactive control of saccades. J Neurosci 36(26):7066–7074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol. 60(2):580–603. https://doi.org/10.1152/jn.1988.60.2.580

    Article  CAS  PubMed  Google Scholar 

  26. Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol. 60(2):604–620

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J Neurophysiol. 60(2):621–644

    Article  CAS  PubMed  Google Scholar 

  28. Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ (2018) A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One 13(11):e0203924 (Hu Y, ed)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herishanu YO, Sharp JA (1981) Normal square wave jerks. Invest Ophthalmol Vis Sci 20(2):268–272

    CAS  PubMed  Google Scholar 

  30. Katsuki F, Constantinidis C (2012) Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front Integr Neurosci 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  31. MacAskill MR, Anderson TJ (2016) Eye movements in neurodegenerative diseases. Curr Opin Neurol 29(1):61–68

    Article  CAS  PubMed  Google Scholar 

  32. Turner TH, Goldstein J, Hamilton JM et al (2011) Behavioral measures of saccade latency and inhibition in manifest and premanifest Huntington’s disease. J Mot Behav 43(4):295–302

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LA: acquisition and interpretation of data, drafting manuscript, and responsibility for the integrity of the study. AI and BG: study concept and design, acquisition and interpretation of data, and study supervision. EB, ADC, FC-A, NM-D, JH, SH, JD, and KH-X: critical revision of manuscript for intellectual content. All read and approved the manuscript.

Corresponding author

Correspondence to Lila Autier.

Ethics declarations

Conflict of interest

Ahmed Idbaih reports Research grants from Carthera, Transgene, Sanofi, Air liquide, Servier, Nutritheragene, advisory board for Leo Pharma, Novocure, Boehringer Ingelheim Int, travel funding from Novocure Carthera and Leo Pharma outside the submitted work .

Ethical approval

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Autier, L., Gaymard, B., Bayen, E. et al. Eye movement abnormalities in neurodegenerative langerhans cell histiocytosis. Neurol Sci 43, 6539–6546 (2022). https://doi.org/10.1007/s10072-022-06180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06180-y

Keywords

Navigation