Log in

Bovine serum albumin promotes IL-1β and TNF-α secretion by N9 microglial cells

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Bovine serum albumin (BSA) is generally used in biomedical experiments. In the solution of some reagents, BSA is necessary to maintain the stability and concentration of the effective component. Therefore, the potential impact of BSA on experimental results should not be neglected when BSA is used. In this study, we observed that BSA induced significant upregulation of mRNA expression and release of pro-inflammatory cytokines, IL-1β, and TNF-α, by N9 microglial cells. Our results suggest that the effects of BSA should be taken into account in experiments on microglia or the central nervous system when BSA is used. In light of the high similarity and homology among mammalian albumins, our findings also indicate that serum albumin may be a potent trigger of cytokine release by microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  2. Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  3. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  4. Möller T, Nolte C, Burger R et al (1997) Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17:615–624

    PubMed  Google Scholar 

  5. Lipovsky MM, Juliana AE, Gekker G et al (1998) Effect of cytokines on anticryptococcal activity of human microglial cells. Clin Diagn Immunol 5:410–411

    CAS  Google Scholar 

  6. Bi XL, Yang JY, Dong YX et al (2005) Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193

    Article  PubMed  CAS  Google Scholar 

  7. Dheen ST, Jun Y, Yan Z, Tay SS et al (2005) Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia 50:21–31

    Article  PubMed  Google Scholar 

  8. Butovsky O, Ziv Y, Schwartz A et al (2006) Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160

    Article  PubMed  CAS  Google Scholar 

  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  PubMed  CAS  Google Scholar 

  11. Wang AL, Yu AC, Lau LT et al (2005) Minocycline inhibits LPS-induced retinal microglia activation. Neurochem Int 47:152–158

    Article  PubMed  CAS  Google Scholar 

  12. Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic Press, San Diego

    Google Scholar 

  13. Brown JR (1976) Structural origins of mammalian albumin. Fed Proc 35:2141–2144

    PubMed  CAS  Google Scholar 

  14. Huang BX, Kim HY, Dass C (2004) Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom 15:1237–1247

    Article  PubMed  CAS  Google Scholar 

  15. Si QS, Nakamura Y, Kataoka K (1997) Albumin enhances superoxide production in cultured microglia. Glia 21:413–418

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura Y, Si QS, Takaku K (2000) Identification of a peptide sequence in albumin that potentiates superoxide production by microglia. J Neurochem 75:2309–2315

    Article  PubMed  CAS  Google Scholar 

  17. Hooper C, Taylor DL, Pocock JM (2005) Pure albumin is a potent trigger of calcium signalling and proliferation in microglia but not macrophages or astrocytes. J Neurochem 92:1363–1376

    Article  PubMed  CAS  Google Scholar 

  18. Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33–42

    Article  PubMed  CAS  Google Scholar 

  19. Leech S, Kirk J, Plumb J et al (2007) Persistent endothelial abnormalities and blood–brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol 33:86–98

    Article  PubMed  CAS  Google Scholar 

  20. Fiala M, Liu QN, Sayre J et al (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur J Clin Invest 32:360–371

    Article  PubMed  CAS  Google Scholar 

  21. Kanmogne GD, Kennedy RC, Grammas P (2002) HIV-1 gp120 proteins and gp160 peptides are toxic to brain endothelial cells and neurons: possible pathway for HIV entry into the brain and HIV-associated dementia. J Neuropathol Exp Neurol 61:992–1000

    PubMed  CAS  Google Scholar 

  22. Calvo CF, Amigou E, Tence M et al (2005) Albumin stimulates monocyte chemotactic protein-1 expression in rat embryonic mixed brain cells. J Neurosci Res 80:707–714

    Article  PubMed  CAS  Google Scholar 

  23. Nadal A, Fuentes E, McNaughton PA (2001) Glial cell responses to lipids bound to albumin in serum and plasma. Prog Brain Res 132:367–374

    Article  PubMed  CAS  Google Scholar 

  24. Bowman GL, Kaye JA, Moore M et al (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68:1809–1814

    Article  PubMed  CAS  Google Scholar 

  25. Singer EJ, Syndulko K, Fahychandon B et al (1994) Intrathecal IgG synthesis and albumin leakage are increased in subjects with HIV-1 neurologic disease. J Acquir Immune Defic Syndr Hum Retrovirol 7:265–271

    CAS  Google Scholar 

  26. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  27. Nordstrom CH (2005) Physiological and biochemical principles underlying volume-targeted therapy—The “Lund concept”. Neurocrit Care 2:83–95

    Article  PubMed  Google Scholar 

  28. Myburgh J, Cooper J, Finfer S et al (2007) Investigators, saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 357:874–884

    Article  PubMed  CAS  Google Scholar 

  29. Chen Y, Constantini S, Trembovler V et al (1996) An experimental model of closed head injury in mice: Pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13:557–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 30572167, 30471781 and 30330220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Feng or Jiang-kai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Tz., **a, Yz., Li, L. et al. Bovine serum albumin promotes IL-1β and TNF-α secretion by N9 microglial cells. Neurol Sci 30, 379–383 (2009). https://doi.org/10.1007/s10072-009-0123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-009-0123-x

Keywords

Navigation