Log in

Nootkatone (NK), a grapefruit-derived aromatic compound, inhibited lipid accumulation by regulating JAK2-STAT signaling and antioxidant response in adipocyte

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPβ, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPKα:

AMP-activated protein kinase alpha

CAT:

Catalase

C/EBPα/β/δ:

CCAAT/enhancer-binding protein alpha/beta/delta

DCFH-DA:

Dichlorodihydrofluorescein diacetate

FABP4:

Fatty acid binding protein4

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GR:

Glutathione reductase

Gpx:

Glutathione peroxidase

GST:

Glutathione-S-transferase

HO-1:

Heme oxygenase-1

JAK2:

Janus kinase 2

KEAP1:

Kelch-like ECH-associated protein 1

KLF2/4/5:

Krüppel-like Factor 2/4/5

KROX20:

Early growth response protein 2 (EGR2)

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

NRF2:

The nuclear factor erythroid 2-related factor 2

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha

PPARγ:

Peroxisome proliferator-activated receptor gamma

SOD:

Superoxide dismutase

STAT3/5:

Signal transducer and activator of transcription 3/5

References

  • Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Frontiers in Molecular Biosciences. 7: 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E, Castell JV, Gombau L. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicology In Vitro. 27: 954-963 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 77: 521-546 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell JA, Boudreau A, Stephens JM. Latest advances in STAT signaling and function in adipocytes. Clinical Science (London) 134: 629-639 (2020)

    Article  CAS  Google Scholar 

  • Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nature Review Immunology. 21: 411-425 (2021)

    Article  CAS  Google Scholar 

  • Chang E, Kim CY. Natural products and obesity: a focus on the regulation of mitotic clonal expansion during adipogenesis. Molecules. 24: 1157 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H-S. GC–MS analyses of the essential oils from Ixeris dentate (Thunb.) Nakai and I. stolonifera A. Gray. The Korean Journal of Food and Nutrition. 25: 274-283 (2012)

    Article  Google Scholar 

  • Fasshauer M, Blüher M. Adipokines in health and disease. Trends in Pharmacological Sciences. 36: 461-470 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Habotta OA, Abdeen A, El-Hanafy AA, Yassin N, Elgameel D, Ibrahim SF, Abdelrahaman D, Hasan T, Imbrea F, Ghamry HI, Fericean L, Behairy A, Atwa AM, Abdelkader A, Mahdi MR, El-Mosallamy SA. Sesquiterpene Nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories. Biomedicine and Pharmacotherapy. 165: 115133 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Hokimoto S, Funakoshi-Tago M, Tago K. Identification of DDX5 as an indispensable activator of the glucocorticoid receptor in adipocyte differentiation. FEBS Journal. 290: 988-1007 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, Woo HA, Rhee SG, Lee KJ, Ha H. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxidants and Redox Signaling. 16: 229-243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javvaji PK, Dhali A, Francis JR, Kolte AP, Mech A, Roy SC, Mishra A, Bhatta R. An efficient nitroblue tetrazolium staining and bright-field microscopy based method for detecting and quantifying intracellular reactive oxygen species in oocytes, cumulus cells and embryos. Frontiers in Cell Developmental Biology. 8: 764 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • ** X, Qiu T, Li L, Yu R, Chen X, Li C, Proud CG, Jiang T. Pathophysiology of obesity and its associated diseases. Acta Pharmaceutical Sinica B. 13: 2403-2424 (2023)

    Article  CAS  Google Scholar 

  • Kang B, Kim CY, Hwang J, Suh HJ, Choi HS. Brassinin, a phytoalexin in cruciferous vegetables, suppresses obesity-induced inflammatory responses through the Nrf2-HO-1 signaling pathway in an adipocyte-macrophage co-culture system. Phytotherapy Research. 33: 1426-1437 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tang QQ, Li X, Lane MD. Effect of phosphorylation and S–S bond-induced dimerization on DNA binding and transcriptional activation by C/EBPbeta. Proceedings of the National Academy of Sciences of USA. 104: 1800-1804 (2007)

    Article  ADS  CAS  Google Scholar 

  • Kim JH, Kim CY, Kang B, Hong J, Choi HS. Dibenzoylmethane suppresses lipid accumulation and reactive oxygen species production through regulation of nuclear factor (erythroid-derived 2)-like 2 and insulin signaling in adipocytes. Biological and Pharmaceutical Bulletin. 41: 680-689 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lim J-J, Shin HY, Suh HJ, Choi HS. Lactobacillus plantarum K8-based paraprobiotics suppress lipid accumulation during adipogenesis by the regulation of JAK/STAT and AMPK signaling pathways. Journal of Functional Foods. 87: 104824 (2021)

    Article  CAS  Google Scholar 

  • Kim DS, Hong SJ, Yoon S, Jo SM, Jeong H, Youn MY, Kim YJ, Kim JK, Shin EC. Olfactory stimulation with volatile aroma compounds of basil (Ocimum basilicum L.) essential oil and linalool ameliorates white fat accumulation and dyslipidemia in chronically stressed rats. Nutrients. 14: 1822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leu SY, Chen YC, Tsai YC, Hung YW, Hsu CH, Lee YM, Cheng PY. Raspberry ketone reduced lipid accumulation in 3T3-L1 cells and ovariectomy-induced obesity in Wistar rats by regulating autophagy mechanisms. Journal of Agricultural and Food Chemistry. 65: 10907-10914 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wang D, Zhou Y, Zhou B, Yang Y, Chen H, Song J. Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes. Cell Research. 18: 311-323 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences. 73: 3221-3247 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masschelin PM, Cox AR, Chernis N, Hartig SM. The impact of oxidative stress on adipose tissue energy balance. Frontiers in Physiology. 10: 1638 (2019)

    Article  PubMed  Google Scholar 

  • Meeran MFN, Azimullah S, Adeghate E, Ojha S. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine. 84: 153405 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Moon Y, Tong T, Kang W, Park T. Filbertone ameliorates adiposity in mice fed a high-fat diet via activation of cAMP signaling. Nutrients. 11: 1749 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Science. 17:124 2016.

    Article  Google Scholar 

  • Murase T, Misawa K, Haramizu S, Minrgishi Y, Hase T. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. American Journal of Physiology-Endocrinology and Metabolism. 299: E266-E275 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Murphy C. The chemical senses and nutrition in older adults. Journal of Nutrition for the Elderly. 27: 247-265 (2008)

    Article  PubMed  Google Scholar 

  • Neumann NJ and Fasshauer M. Added flavors: potential contributors to body weight gain and obesity? BMC Medicine. 20: 417 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard AJ and Stephens JM. The role of JAK-STAT signaling in adipose tissue function. Biochimica et Biophysica Acta. 1842: 431-439 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Straub LG, Efthymiou V, Grandl G, Balaz M, Challa TD, Truscello L, Horvath C, Moser C, Rachamin Y, Arnold M, Sun W, Modica S, Wolfrum C. Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity. Diabetologia. 62: 2094-2105 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YS, Qu W. Dietary Apigenin promotes lipid catabolism, thermogenesis, and browning in adipose tissues of HFD-Fed mice. Food and Chemical Toxicology. 133: 110780 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxidants and Redox Signaling. 29: 1727-1745 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Villarreal D, Camacho A, Castro H, Ortiz-Lopez R, De La Garza AL. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. Journal of Physiology and Biochemistry. 75: 83-88 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Weiszenstein M, Musutova M, Plihalova A, Westlake K, Elkalaf M, Koc M, Prochazka A, Pala J, Gulatis S, Trnka J, Polak J. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells. Biochemical and Biophysical Research Communications. 478: 727-732 (2016)

    Article  CAS  PubMed  Google Scholar 

  • You YL, Lee JY, Choi HS. Schisandra chinensis-derived gomisin C suppresses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Science and Biotechnology. 32: 1225-1233 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Guo W, Yang Y, Wu J. JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPβ transcription. Journal of Cellular Biochemistry. 112: 488-497 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, function, and applications of the sesquiterpenes valencene and Nootkatone: a comprehensive review. Journal of Agricultural and Food Chemistry. 71: 121-142 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by a 2022 Research Grant from Sangmyung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Son Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, YL., Choi, HS. Nootkatone (NK), a grapefruit-derived aromatic compound, inhibited lipid accumulation by regulating JAK2-STAT signaling and antioxidant response in adipocyte. Food Sci Biotechnol (2024). https://doi.org/10.1007/s10068-024-01522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-024-01522-2

Keywords

Navigation