Log in

Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Buckwheat germinated on days of 3, 5, and 7 was digested in vitro, and the antioxidant and anti-obesity effects of the digesta were evaluated. In vitro digesta of 5 days germinated buckwheat (GBD5) showed significantly higher antioxidant activity in DPPH, ABTS, total phenolic content, total flavonoid content, and ferric reducing antioxidant power by 5.3, 1.3, 2.0, 3.2, and 2.8-fold, respectively than in vitro digesta of non-germinated buckwheat. GBD5 exerted inhibitory effect on total lipid accumulation in 3T3-L1 adipocyte in a dose-dependent manner, with over 25% reduction at 400 µg/mL. Additionally, GBD5 significantly downregulated genes related to adipocyte differentiation and fat accumulation. GBD5 possessed different metabolite profiles compared to others such as higher content of γ-aminobutyric acid and succinic acid. Therefore, GBD5 has potent antioxidant effects and suppresses fat accumulation-related genes and proteins expression, which could act as a new functional substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aborus NE, Čanadanović-Brunet J, Ćetković G, Šaponjac VT, Vulić J, Ilić N. Powdered barley sprouts: composition, functionality and polyphenol digestibility. International Journal of Food Science and Technology. 52: 231-238 (2017)

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry. 239: 70-76 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Boisen S, Eggum BO. Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutrition Research Reviews. 4: 141-162 (1991)

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28: 25-30 (1995)

    Article  CAS  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10: 178-182 (2002)

    CAS  Google Scholar 

  • Chappell VA, Janesick A, Blumberg B, Fenton SE. Tetrabromobisphenol-A promotes early adipogenesis and lipogenesis in 3T3-L1 cells. Toxicological Sciences. 166: 332-344 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavan JK, Kadam SS. Nutritional improvement of cereals by sprouting. Critical Reviews in Food Science and Nutrition. 28: 401-437 (1989)

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Su H, Xu Y, ** C. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Scientific Reports. 7: 40514 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi I, Seog H, Park Y, Kim Y, Choi H. Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine. 14: 563-567 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Choi EH, Lee DY, Park HS, Shim SM. Changes in the profiling of bioactive components with the roasting process in lycium chinense leaves and the anti-obesity effect of its bioaccessible fractions. Journal of the Science of Food and Agriculture. 99: 4482-4492 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Fabjan N, Rode J, Košir IJ, Wang Z, Zhang Z, Kreft I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry. 51: 6452-6455 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Folin O, Denis W. A new colorimetric method for the determination of vanillin in flavoring extracts. Industrial Engineering Chemistry. 4: 670-672 (1912)

    Article  Google Scholar 

  • Gan RY, Lui WY, Wu K, Chan CL, Dai SH, Sui ZQ, Corke H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology. 59: 1-14 (2017)

    Article  CAS  Google Scholar 

  • Gawlik-Dziki U, Dziki D, Baraniak B, Lin R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT-Food Science and Technology. 42: 137-143 (2009)

    Article  CAS  Google Scholar 

  • Hsu CL, Yen GC. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. Journal of Agricultural and Food Chemistry. 55: 8404-8410 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Xu Y, **e J, Sun C, Zheng X, Chen W. Systematic evaluation of phenolic compounds and protective capacity of a new mulberry cultivar J33 against palmitic acid-induced lipotoxicity using a simulated digestion method. Food Chemistry. 258: 43-50 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Hur SJ, Park SJ, Jeong CH. Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. Journal of Agricultural and Food Chemistry. 59: 10699-10704 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Hur SJ, Lee SK, Kim YC, Choi IW. Development of in vitro human digestion models for health functional food research. Food Science and industry. 45: 40-49 (2012)

    Google Scholar 

  • Hwang EJ, Lee SY, Kwon SJ, Park MH, Boo HO. Antioxidative, antimicrobial and cytotoxic activities of Fagopyrum esculentum Mench extract in germinated seeds. Korean Journal of Medicinal Crop Science. 14: 1-7 (2006)

    Google Scholar 

  • Hwang JT, Nam TG, Chung MY, Park JH, Choi HK. Effect of tartary buckwheat sprout on non-alcoholic fatty liver disease through anti-histone acetyltransferase activity. Journal of the Korean Society of Food Science and Nutrition. 46, 169-176 (2017)

    Article  Google Scholar 

  • Jamdar SN, Deshpande R, Marathe SA. Effect of processing conditions and in vitro protein digestion on bioactive potentials of commonly consumed legumes. Food Bioscience. 20: 1-11 (2017)

    Article  CAS  Google Scholar 

  • Jara-Palacios JM, Gonçalves S, Dolores H, Heredia FJ, Romano A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International. 109: 433-439 (2018)

    Article  CAS  Google Scholar 

  • Kang HW. Antioxidant and anti-inflammation effects of water extract from buckwheat. Culinary Science and Hospitality Research. 20: 190-199 (2014)

    Article  Google Scholar 

  • Karakaya S. Bioavailability of phenolic compounds. Critical Reviews in Food Science and Nutrition. 44: 453-464 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Kim SL, Kim SK, Park CH. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International. 37: 319-327 (2004)

    Article  CAS  Google Scholar 

  • Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry. 110: 814-820 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Kang NE, Kim MH, Ha AW. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes. Nutrition Research and Practice. 7: 160-165 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HY, Woo SY, Seo WD, Le MJ, Changes of antioxidant activity as affected by cultivation period in buckwheat (Fagopyrum species) sprouts. Journal of the Korean Society of Food Science and Nutrition. 35: 590-596 (2020)

    Google Scholar 

  • Kim MJ, Kawk HW, Kim SH, Lee HJ, Seo JW, Kim JT, Kim YM. Anti-obesity effect of hot water extract of barley sprout through the inhibition of adipocyte differentiation and Growth. Metabolites. 11: 610 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krkoskova B, Mrazova Z. Prophylactic components of buckwheat. Food Research International. 38: 561-568 (2005)

    Article  Google Scholar 

  • Lee MS, Shin Y, Jung S, Kim SY, Jo YH, Kim CT, Kim Y. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules. 22: 1160 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  • Lin LY, Peng CC, Yang YL, Peng RY. Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. Journal of Agricultural and Food Chemistry. 56: 1216-1223 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Qiu Y, Beta T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. Journal of Agricultural and Food Chemistry. 58: 9235-9241 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Song Y, Zhao Q, Wang Y, Li C, Zou L, Hu Y. Effects of tartary buckwheat protein on gut microbiome and plasma metabolite in rats with high-fat diet. Foods. 10: 2457 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyen BTT, Thao NP, Tai BH, Lim JY, Ki HH, Kim DK, Kim YH. Chemical constituents of Triticum aestivum and their effects on adipogenic differentiation of 3T3-L1 preadipocytes. Archives of Pharmacal Research. 38: 1011-1018 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Metzger BT, Robbins MG, Barnes DM. Longitudinal expression of antioxidant phytochemicals in buckwheat (Fagopyrum esculentum Moench). Journal of Herbs, Spices and Medicinal Plants. 16: 106-118 (2010)

    Article  CAS  Google Scholar 

  • Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A. A standardised static in vitro digestion method suitable for food an international consensus. Food and Function. 5: 1113-1124 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Nam TG, Lee SM, Park JH, Kim DO, Baek NI, Eom SH. Flavonoid analysis of buckwheat sprouts. Food Chemistry. 170: 97-101 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz Y, Robbins GS. Amino acid composition of buckwheat. Journal of Agricultural and Food Chemistry. 20: 270-274 (1972)

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Rhyu J, Kim MS, You MK, Bang MA, Kim HA. Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Nutrition Research and Practice. 8: 33-39 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology. 7: 885-889 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sharma S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Critical Reviews in Food Science and Nutrition. 57: 3051-3071 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kim SJ, Takigawa S, Mukasa Y, Hashimoto N, Saito K, Noda T, Matuura-Endo C, Zaidul ISM, Yamauchi H. Changes in rutin concentration and flavonol-3-glucosidase activity during seedling growth in tartary buckwheat (Fagopyrum tataricum Gaertn.). Canadian Journal of Plant Science. 87: 83-87 (2007)

    Article  CAS  Google Scholar 

  • Terpinc P, Cigić B, Polak T, Hribar J, Požrl T. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chemistry. 210: 9-17 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Ayugase J. Anti-stress effects of flavonoids from buckwheat sprouts in mice subjected to restraint stress. Food Science and Technology Research. 14: 253-260 (2008)

    Article  CAS  Google Scholar 

  • Werner S, Bohm V. Bioaccessibility of carotenoids and vitamin E from pasta: Evaluation of an in vitro digestion model. Journal of Agricultural and Food Chemistry. 59: 1163-1170 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang P, Ali B, Yang N, Chen Y, Wu F, Xu X. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Journal of the Science of Food and Agriculture. 97: 4227-4234 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical Biochemistry. 425: 88-90 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, **ng B, Sun M, Zhou B, Ren G, Qin P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Science and Nutrition. 8: 4232-4241 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Cui X, Ma X, Wang Z. Preparation, characterization, and evaluation of antioxidant activity and bioavailability of a self-nanoemulsifying drug delivery system (SNEDDS) for buckwheat flavonoids. Acta Biochimica et Biophysica Sinica. 52: 1265-1274 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Hao T, Zhou Y, Tang W, **ao Y, Meng X, Fang X. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination. Journal of Food Science and Technology. 52: 2458-2463 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Zielińska D, Turemko M, Kwiatkowski J, Zieliński H. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules. 17: 9668-9682 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07045467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Ja Kim.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, HG., Kim, MJ. Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat. Food Sci Biotechnol 31, 879–892 (2022). https://doi.org/10.1007/s10068-022-01086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01086-z

Keywords

Navigation